Question #169402

Water enters a house from a ground pipe with an inside diameter of 0.02 m at an absolute pressure of 4.0 x 10⁵ Pa. A pipe that is 0.01 m in diameter leads to the second-floor bathroom 5.0m above the ground floor. The flow speed at the ground pipe is 1.5m/s. Find the following:

a) flow speed on the second floor ; and

b) pressure


1
Expert's answer
2021-03-09T15:29:55-0500

(a) Let's use the law of continuity:


v1A1=v2A2,v_1A_1=v_2A_2,v2=v1A1A2=πr12πr22v1,v_2=\dfrac{v_1A_1}{A_2}=\dfrac{\pi r_1^2}{\pi r_2^2}v_1,v2=π(0.01 m)21.5 msπ(0.005 m)2=6.0 ms.v_2=\dfrac{\pi\cdot(0.01\ m)^2\cdot1.5\ \dfrac{m}{s}}{\pi\cdot(0.005\ m)^2}=6.0\ \dfrac{m}{s}.

(b) We can find the pressure from the Bernoulli's equation:


P1+ρgh1+12ρv12=P2+ρgh2+12ρv22,P_1+\rho gh_1+\dfrac{1}{2}\rho v_1^2=P_2+\rho gh_2+\dfrac{1}{2}\rho v_2^2,P2=P1ρg(h2h1)12ρ(v22v12),P_2=P_1-\rho g(h_2-h_1)-\dfrac{1}{2}\rho(v_2^2-v_1^{2}),

P2=4.0105 Pa1000 kgm39.8 ms2(5 m0)121000 kgm3((6 ms)2(1.5 ms)2)=3.3105 Pa.P_2=4.0\cdot10^5\ Pa-1000\ \dfrac{kg}{m^3}\cdot9.8\ \dfrac{m}{s^2}\cdot(5\ m-0)-\dfrac{1}{2}\cdot1000\ \dfrac{kg}{m^3}\cdot((6\ \dfrac{m}{s})^2-(1.5\ \dfrac{m}{s})^{2})=3.3\cdot10^5\ Pa.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS