Question #168162

Two blocks with masses 4.00 kg and 8.00 kg, respectively, are connected by a string and slide down a 30.0° inclined plane, as shown below. The coefficient of kinetic friction between the 4.00-kg block and the plane is 0.20; that between the 8.00-kg block and the plane is 0.40 (a) Calculate the acceleration of each block. (b) Calculate the tension in the string μ2-04 8 kg 4 kg 0-300


1
Expert's answer
2021-03-02T18:03:54-0500


a)


n1=m1gcos30fk1=μk1m1gcos30m1a1=m1gsin30μk1m1gcos30a1=9.8(sin300.2cos30)=3.20ms2n_1=m_1g\cos{30}\\f_{k1}=\mu_{k1}m_1g\cos{30}\\m_1a_1=m_1g\sin{30}-\mu_{k1}m_1g\cos{30}\\a_1=9.8(\sin{30}-0.2\cos{30})=3.20\frac{m}{s^2}

n2=m2gcos30fk2=μk2m2gcos30m2a2=m2gsin30μk2m2gcos30a2=9.8(sin300.4cos30)=1.51ms2n_2=m_2g\cos{30}\\f_{k2}=\mu_{k2}m_2g\cos{30}\\m_2a_2=m_2g\sin{30}-\mu_{k2}m_2g\cos{30}\\a_2=9.8(\sin{30}-0.4\cos{30})=1.51\frac{m}{s^2}

b)


m1a1=m1gsin30μk1m1gcos30Tm2a2=m2gsin30μk2m2gcos30+Tm_1a_1=m_1g\sin{30}-\mu_{k1}m_1g\cos{30}-T\\m_2a_2=m_2g\sin{30}-\mu_{k2}m_2g\cos{30}+T

T=48(3.21.51)4+8=4.51 NT=\frac{4\cdot8(3.2-1.51)}{4+8}=4.51\ N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS