Answer to Question #168056 in Physics for Tithi

Question #168056

Find the work done in stretching a wire of 1 sq. mm cross-section and 2 m long through 0.1 mm. Given that the Young’s modulus of the material of the wire is 2.0 × 1011 N/m2. 


1
Expert's answer
2021-03-08T08:31:52-0500

The work is:


W=12kx2W = \dfrac{1}{2}kx^2

The spring constant kk of the wire can be found from the Hook's law:


F=kxF = kx

where FF is the elastic force, and x=0.1mm=104mx = 0.1mm = 10^{-4}m is the elongation of the wire.

On the other hand, the Hook's law states:


FA=ExL\dfrac{F}{A} = E\dfrac{x}{L}

where A=1mm2=106m2A = 1mm^2 = 10^{-6}m^2 is the cross-section, L=2mL = 2m is the length of the wire, and E=2×1011N/m2E = 2\times 10^{11}N/m^2 is the Young’s modulus of the material of the wire.

Equating the force from these two equations, obtain:


kx=EAxLk=EALkx = \dfrac{EAx}{L}\\ k = \dfrac{EA}{L}

Substituting this expression into the formula for the work, obtain:


W=EAx22LW=2×1011106(104)222=5×104JW = \dfrac{EAx^2}{2L}\\ W = \dfrac{2\times 10^{11}\cdot 10^{-6}\cdot (10^{-4})^2}{2\cdot 2} = 5\times 10^{-4}J

Answer. 5×104J5\times 10^{-4}J.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment