1. Using the component method, determine the resultant of the following vectors:
A = 250N 37o S of W
B = 150N due N
C = 300N 60o N of E
D = 200N 53o N of W
E = 100N 30o S of E
Let's determine the resultant of the following vectors using the component method:
"R_x=250\\ N\\cdot cos(180^{\\circ}+37^{\\circ})+150\\ N\\cdot\\ cos(-270^{\\circ})+300\\ N\\cdot cos(60^{\\circ})+200\\ N\\cdot cos(90^{\\circ}+53^{\\circ})+100\\ N\\cdot cos(270^{\\circ}+30^{\\circ})=-159.38\\ N."
"R_x=250\\ N\\cdot sin(180^{\\circ}+37^{\\circ})+150\\ N\\cdot\\ sin(-270^{\\circ})+300\\ N\\cdot sin(60^{\\circ})+200\\ N\\cdot sin(90^{\\circ}+53^{\\circ})+100\\ N\\cdot sin(270^{\\circ}+30^{\\circ})=293.11\\ N."
We can find the resultant magnitude from the Pythagorean theorem:
We can find the direction of the resultant from the geometry:
Comments
Leave a comment