(a) Let's first find the tme that the stone takes to reach the maximum height:
v y = v 0 y − g t , v_y=v_{0y}-gt, v y = v 0 y − g t , 0 = v 0 y − g t , 0=v_{0y}-gt, 0 = v 0 y − g t , t = v 0 y g = 14 m s 9.8 m s 2 = 1.43 s . t=\dfrac{v_{0y}}{g}=\dfrac{14\ \dfrac{m}{s}}{9.8\ \dfrac{m}{s^2}}=1.43\ s. t = g v 0 y = 9.8 s 2 m 14 s m = 1.43 s . Finally, we can find the maximum height attained by the ball:
y m a x = v 0 y t − 1 2 g t 2 , y_{max}=v_{0y}t-\dfrac{1}{2}gt^2, y ma x = v 0 y t − 2 1 g t 2 , y m a x = 14 m s ⋅ 1.43 s − 1 2 ⋅ 9.8 m s 2 ⋅ ( 1.43 s ) 2 = 10 m . y_{max}=14\ \dfrac{m}{s}\cdot1.43\ s-\dfrac{1}{2}\cdot9.8\ \dfrac{m}{s^2}\cdot(1.43\ s)^2=10\ m. y ma x = 14 s m ⋅ 1.43 s − 2 1 ⋅ 9.8 s 2 m ⋅ ( 1.43 s ) 2 = 10 m . b) We can find the velocity of the stone as it strikes the ground from the kinematic equation:
v f 2 = v i 2 + 2 g h m a x , v_f^2=v_i^2+2gh_{max}, v f 2 = v i 2 + 2 g h ma x , v f = v i 2 + 2 g h m a x , v_f=\sqrt{v_i^2+2gh_{max}}, v f = v i 2 + 2 g h ma x , v f = 0 + 2 ⋅ 9.8 m s 2 ⋅ 10 m = 14 m s . v_f=\sqrt{0+2\cdot9.8\ \dfrac{m}{s^2}\cdot10\ m}=14\ \dfrac{m}{s}. v f = 0 + 2 ⋅ 9.8 s 2 m ⋅ 10 m = 14 s m .
Comments
You're great