(a) We can find the angular acceleration from the kinematic equation:
"\\omega_f^2=\\omega_i^2+2\\alpha\\Delta \\theta,""\\alpha=\\dfrac{\\omega_f^2-\\omega_i^2}{2\\Delta\\theta},""\\alpha=\\dfrac{(50\\ \\dfrac{rev}{min}\\cdot\\dfrac{1\\ min}{60\\ s}\\cdot2\\pi\\ rad)^2-(20\\ \\dfrac{rev}{min}\\cdot\\dfrac{1\\ min}{60\\ s}\\cdot2\\pi\\ rad)^2}{2\\cdot40\\ rev\\cdot2\\pi\\ rad},""\\alpha=0.045\\ \\dfrac{rad}{s^2}."(b) We can find the number of revolutions completed by the time the wheel reaches 20 rpm from the same kinematic equation:
"\\Delta\\theta=\\dfrac{\\omega_f^2-\\omega_i^2}{2\\alpha},""\\Delta\\theta=\\dfrac{(20\\ \\dfrac{rev}{min}\\cdot\\dfrac{1\\ min}{60\\ s}\\cdot2\\pi\\ rad)^2-0}{2\\cdot0.045\\ \\dfrac{rad}{s^2}}=48.9\\ rad\\cdot \\dfrac{1\\ rev}{2\\pi\\ rad}=7.8\\ rad."
Comments
Leave a comment