Question #163505
  1. A wheel starts from rest and accelerates uniformly. As the rate of rotation changes from 20 to 50 rpm the wheel makes 40 revolutions. Find: (a) the angular acceleration; (b) the number of revolutions completed by the time the wheel reaches 20 rpm. 
1
Expert's answer
2021-02-13T12:17:49-0500

(a) We can find the angular acceleration from the kinematic equation:


ωf2=ωi2+2αΔθ,\omega_f^2=\omega_i^2+2\alpha\Delta \theta,α=ωf2ωi22Δθ,\alpha=\dfrac{\omega_f^2-\omega_i^2}{2\Delta\theta},α=(50 revmin1 min60 s2π rad)2(20 revmin1 min60 s2π rad)2240 rev2π rad,\alpha=\dfrac{(50\ \dfrac{rev}{min}\cdot\dfrac{1\ min}{60\ s}\cdot2\pi\ rad)^2-(20\ \dfrac{rev}{min}\cdot\dfrac{1\ min}{60\ s}\cdot2\pi\ rad)^2}{2\cdot40\ rev\cdot2\pi\ rad},α=0.045 rads2.\alpha=0.045\ \dfrac{rad}{s^2}.

(b) We can find the number of revolutions completed by the time the wheel reaches 20 rpm from the same kinematic equation:


Δθ=ωf2ωi22α,\Delta\theta=\dfrac{\omega_f^2-\omega_i^2}{2\alpha},Δθ=(20 revmin1 min60 s2π rad)2020.045 rads2=48.9 rad1 rev2π rad=7.8 rad.\Delta\theta=\dfrac{(20\ \dfrac{rev}{min}\cdot\dfrac{1\ min}{60\ s}\cdot2\pi\ rad)^2-0}{2\cdot0.045\ \dfrac{rad}{s^2}}=48.9\ rad\cdot \dfrac{1\ rev}{2\pi\ rad}=7.8\ rad.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS