The cross-product is:
c = a × b = ∣ i j k a x a y a z b x b y b z ∣ = ∣ i j k − 5 6 − 3 7 8 4 ∣ \mathbf{c}=\mathbf{a}\times \mathbf{b} = \begin{vmatrix} \mathbf i & \mathbf j & \mathbf k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{vmatrix} \mathbf i & \mathbf j & \mathbf k \\ -5 & 6 & -3 \\ 7 & 8 & 4 \end{vmatrix} c = a × b = ∣ ∣ i a x b x j a y b y k a z b z ∣ ∣ = ∣ ∣ i − 5 7 j 6 8 k − 3 4 ∣ ∣ where i , j , k \mathbf{i},\mathbf{j},\mathbf{k} i , j , k are unit vecrots of Cartesian coordinates. Thus, obtain:
c = 48 i − j − 82 k \mathbf{c} = 48\mathbf{i}-\mathbf{j} -82 \mathbf{k} c = 48 i − j − 82 k To check the perpendicularity, let's find dot products:
a ⋅ c = ( − 5 ) ⋅ 48 + 6 ⋅ ( − 1 ) + ( − 3 ) ⋅ ( − 82 ) = 0 b ⋅ c = 7 ⋅ 48 + 8 ⋅ ( − 1 ) + 4 ⋅ ( − 82 ) = 0 \mathbf{a}\cdot \mathbf{c} = (-5)\cdot 48 +6\cdot (-1) + (-3)\cdot (-82) = 0\\
\mathbf{b}\cdot \mathbf{c} = 7\cdot 48 +8\cdot (-1) + 4\cdot (-82) = 0 a ⋅ c = ( − 5 ) ⋅ 48 + 6 ⋅ ( − 1 ) + ( − 3 ) ⋅ ( − 82 ) = 0 b ⋅ c = 7 ⋅ 48 + 8 ⋅ ( − 1 ) + 4 ⋅ ( − 82 ) = 0 Thus, a x b is perpendicular to both a and b.
Comments