Question #162678

Find the magnitude and direction of the resultant ( R ) by adding the following forces using the component method: 12.0 lb. At 30 degrees above the x axis, 15.0 lb. at 140 degrees and 8.0 lb. at 79 degrees S of W. Represent the given vectors.



1
Expert's answer
2021-02-15T17:42:22-0500

x-components:


Ax=12 cos30º=10.4 lb,Bx=15 cos140º=11.5 lb,Cx=8 cos(180º+79º)=1.53 lb.A_x=12\text{ cos}30º=10.4\text{ lb},\\ B_x=15\text{ cos}140º=-11.5\text{ lb},\\ C_x=8\text{ cos}(180º+79º)=1.53\text{ lb}.

y-components:


Ay=12 sin30º=6 lb,By=15 sin140º=9.64 lb,Cy=8 sin(180º+79º)=7.85 lb.A_y=12\text{ sin}30º=6\text{ lb},\\ B_y=15\text{ sin}140º=9.64\text{ lb},\\ C_y=8\text{ sin}(180º+79º)=-7.85\text{ lb}.

Resultant:


Rx=Ax+Bx+Cx=0.43 lb,Ry=Ay+By+Cy=7.79 lb,R=Rx2+Ry2=7.80 lb.R_x=A_x+B_x+C_x=0.43\text{ lb}, \\ R_y=A_y+B_y+C_y=7.79\text{ lb},\\ R=\sqrt{R_x^2+R_y^2}=7.80\text{ lb}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS