A flywheel with a diameter of 1.0 m and initially rotating at 500 rpm, rotate at 1000 rpm after 20 s. Assuming a constant angular acceleration, find the value of the angular acceleration.
500 rpm=8.33 s−1500\ rpm=8.33\ s^{-1}500 rpm=8.33 s−1
1000 rpm=16.67 s−11000\ rpm=16.67\ s^{-1}1000 rpm=16.67 s−1
ω=ω0+ϵt→ϵ=ω−ω0t=2πν−2πν0t=\omega=\omega_0+\epsilon t \to \epsilon=\frac{\omega-\omega_0}{t}=\frac{2\pi\nu-2\pi\nu_0}{t}=ω=ω0+ϵt→ϵ=tω−ω0=t2πν−2πν0=
=2π⋅16.67−2π⋅8.3320=2.62 (rad/s2)=\frac{2\pi\cdot 16.67-2\pi\cdot8.33}{20}=2.62\ (rad/s^2)=202π⋅16.67−2π⋅8.33=2.62 (rad/s2) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments