The total displacement can be found if we find the x and y-components of the two vectors. Begin with the 20m-vector:
"A_x=A\\text{ sin}\\theta_A=20\\text{ sin}25\u00b0=8.45\\text{ m},\\\\\nA_y=A\\text{ cos}\\theta_A=20\\text{ cos}25\u00b0=18.1\\text{ m}."Repeat the calculations for the second vector:
"B_x=B\\text{ sin}\\theta_B=30\\text{ cos}35\u00b0=24.6\\text{ m},\\\\\nB_y=B\\text{ cos}\\theta_B=30\\text{ sin}35\u00b0=17.2\\text{ m}."Calculate the resultant:
"R_x=A_x+B_x,\\\\\nR_y=A_y+B_y,\\\\\nR=\\sqrt{R_x^2+R_y^2}=\\\\=\\sqrt{(A_x+B_x)^2+(A_y+B_y)^2}=48.4\\text{ m}." The angle (N of W) is
"\\theta=\\text{atan}\\frac{R_y}{R_x}=46.9\u00b0."
Comments
Leave a comment