Question #161770

A transverse traveling wave on a cord is represented by y(x,t) = 0.48 sin (4πx + 10πt) where y and x are in meters and t in seconds.

a) For this wave determine the wavelength, frequency, phase velocity (magnitude and direction), amplitude, maximum and minimum transverse speeds of particles of the cord.

b) What is the minimum length of the cord required for a standing wave to be formed when this wave meets its reflection?

c) Write the equation representing the standing wave.

What is the amplitude of vibration for a particle of the string located at x = 0.15 m?


1
Expert's answer
2021-02-10T10:09:09-0500

(a)

λ=2πk=2π4π m1=0.5 m.\lambda=\dfrac{2\pi}{k}=\dfrac{2\pi}{4\pi\ m^{-1}}=0.5\ m.f=ω2π=10π rads2π=5 Hz.f=\dfrac{\omega}{2\pi}=\dfrac{10\pi\ \dfrac{rad}{s}}{2\pi}=5\ Hz.v=10π rads4π m1=2.5 ms,v=\dfrac{10\pi\ \dfrac{rad}{s}}{4\pi\ m^{-1}}=2.5\ \dfrac{m}{s},

The wave propagates along xx-axis.


A=0.48 m.A=0.48\ m.

Let's take the derivative with respect to tt:


v(x,t)=ddt(y(x,t)),v(x,t)=\dfrac{d}{dt}(y(x,t)),v(x,t)=ddt(0.48sin(4πx+10πt)=0.4810πcos(4πx+10πt),v(x,t)=\dfrac{d}{dt}(0.48sin(4\pi x+10\pi t)=0.48\cdot10\pi cos(4\pi x+10\pi t),v(x,t)=15.1cos(4πx+10πt).v(x,t)=15.1 cos(4\pi x+10\pi t).

The maximum and minimum transverse speeds of particles of the cord will be when

cos(4πx+10πt)=±1.cos(4\pi x+10\pi t)=\pm1.

Therefore,


vmax=15.1 ms,vmin=15.1 ms.v_{max}=15.1\ \dfrac{m}{s}, v_{min}=-15.1\ \dfrac{m}{s}.

(b) The minimum length of the cord required for a standing wave to be formed can be found from the formula:


L=12λ=120.5 m=0.25 m.L=\dfrac{1}{2}\lambda=\dfrac{1}{2}\cdot0.5\ m=0.25\ m.

(c) Let's consider two identical waves that move in opposite directions. The first wave has a wave function of y1(x,t)=0.48sin(4πx+10πt)y_1(x,t)=0.48sin(4\pi x+10\pi t) and the second wave has a wave function y2(x,t)=0.48sin(4πx10πt)y_2(x,t)=0.48sin(4\pi x-10\pi t). The waves interfere and form a resultant wave:


y(x,t)=y1(x,t)+y2(x,t),y(x,t)=y_1(x,t)+y_2(x,t),y(x,t)=0.48sin(4πx+10πt)+0.48sin(4πx10πt).y(x,t)=0.48sin(4\pi x+10\pi t)+0.48sin(4\pi x-10\pi t).

Using the trigonometric identity


sin(α±β)=sinαcosβ±cosαsinβsin(\alpha \pm \beta)=sin\alpha cos\beta \pm cos\alpha sin\beta

we can write the equation representing the standing wave:


y(x,t)=20.48sin(4πx)cos(10πt),y(x,t)=2\cdot0.48sin(4\pi x)cos(10\pi t),y(x,t)=0.96sin(4πx)cos(10πt).y(x,t)=0.96sin(4\pi x)cos(10\pi t).

Let's assume that initially at time t=0t=0 two waves are in phase. Then, cos(10πt)=1cos(10\pi t)=1 and we get the amplitude of vibration for a particle of the string located at x = 0.15 m:


y(x,t)=0.96sin(4π0.15 m)=0.031 m.y(x,t)=0.96sin(4\pi\cdot0.15\ m)=0.031\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS