By definition, the divergence of any vector field F=(Fx,Fy,Fz) is:
∇⋅F=∂x∂Fx+∂y∂Fy+∂z∂Fz In our case F=(3x3,2y2,4z2), and the divergence is:
∇⋅F(x,y,z)=∂x∂(3x3)+∂y∂(2y2)+∂z∂(4z2)=9x2+4y+8z At the point (0,1,1) this divergence is:
∇⋅F(0,1,1)=9⋅02+4⋅1+8⋅1=12 Answer. 12.
Comments