Question #159836

A Velocity Vector V is given by, V= 5x3i +2y2 j +9z2 k, . Calculate curl of V (∇*V ) at (3, 0, 1).


1
Expert's answer
2021-01-31T18:58:26-0500

Let the vector be:


V=(5x3,2y2,9z2)\mathbf{V} = (5x^3, 2y^2,9z^2)

By definition, the curl is:


×V=(VzyVyz)ex+(VxzVzx)ey+(VyxVxy)ez\nabla \times \mathbf{V} = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) \mathbf e_x+ \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) \mathbf e_y+ \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \mathbf e_z

Subsituting the coordinates of the vector, obtain:


×V=((9z2)y(2y2)z)ex+((5x3)z(9z2)x)ey+((2y2)x(5x3)y)ez\nabla \times \mathbf{V} = \left(\frac{\partial (9z^2)}{\partial y} - \frac{\partial (2y^2)}{\partial z}\right) \mathbf e_x+ \left(\frac{\partial (5x^3)}{\partial z} - \frac{\partial (9z^2)}{\partial x}\right) \mathbf e_y+ \left(\frac{\partial (2y^2)}{\partial x} - \frac{\partial (5x^3)}{\partial y}\right) \mathbf e_z

It is clear, that each derivative is equal to zero. Thus:


×V=0\nabla \times \mathbf{V} = 0

Answer. 0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS