Question #159649

The wave function that describes a certain transverse wave at initial time t=0 is

y(x,t)=(7.20mm)sin2π(x/0.3m - t/0.0400s)

Find the wave's

a) amplitude

b) wavelength

c) frequency

d) speed of propagation

e) period

f) wave number

g) direction of propagation


1
Expert's answer
2021-01-29T04:29:15-0500

The wave function that describes a certain transverse wave 

y(x,t)=ymaxsin(2πλx2πTt)y(x,t)=y_{\rm max}\sin\left(\frac{2\pi}{\lambda}x-\frac{2\pi}{T}t\right)

In our case

y(x,t)=(7.20mm)sin(2π0.3mx2π0.04st)y(x,t)=(7.20 \:{\rm mm}) \sin\left(\frac{2\pi}{0.3\:\rm m}x-\frac{2\pi}{0.04\:\rm s}t\right)

a) amplitude

ymax=7.20mmy_{\rm max}=7.20 \:{\rm mm}

b) wavelength

λ=0.3m\lambda=0.3\:\rm m

c) frequency

f=1T=10.04s=25Hzf=\frac{1}{T}=\frac{1}{0.04\:\rm s}=25\:\rm Hz

d) speed of propagation

v=fλ=250.3=7.5m/sv=f\lambda=25*0.3=7.5\:\rm m/s

e) period

T=0.04sT=0.04\:\rm s

f) wave number

k=2π0.3m=21m1k=\frac{2\pi}{0.3\:\rm m}=21\:\rm m^{-1}

g) direction of propagation of the wave is negative xx direction.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS