Question #157645

Using Gauss's theorem, calculate the flux of the vector field A vector=x³i^+x²zj^+yzk^ through the surface of a cube of side 2 units.


1
Expert's answer
2021-01-23T14:07:33-0500
divA=3x2+0+y=3x2+yΦ=020202(3x2+y)dxdydzΦ=20202(3x2+y)dxdyΦ=202((2)3x2+0.5(2)2)dx=40div {\vec{A}}=3x^2+0+y=3x^2+y\\ \Phi=\int_0^2\int_0^2\int_0^2(3x^2+y)dxdydz\\ \Phi=2\int_0^2\int_0^2(3x^2+y)dxdy\\ \Phi=2\int_0^2((2)3x^2+0. 5(2)^2)dx=40\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS