a) We can find the maximum kinetic energy of the photoelectrons emitted from the formula:
K E m a x = h f − W , KE_{max}=hf-W, K E ma x = h f − W , K E m a x = h c λ − W , KE_{max}=\dfrac{hc}{\lambda}-W, K E ma x = λ h c − W , K E m a x = 6.63 ⋅ 1 0 − 34 J ⋅ s ⋅ 3 ⋅ 1 0 8 m s 360 ⋅ 1 0 − 9 m − 1.6 e V , KE_{max}=\dfrac{6.63\cdot10^{-34}\ J\cdot s\cdot3\cdot10^8\ \dfrac{m}{s}}{360\cdot10^{-9}\ m}-1.6\ eV, K E ma x = 360 ⋅ 1 0 − 9 m 6.63 ⋅ 1 0 − 34 J ⋅ s ⋅ 3 ⋅ 1 0 8 s m − 1.6 e V , K E m a x = 5.52 ⋅ 1 0 − 19 J − 1.6 e V ⋅ 1.6 ⋅ 1 0 − 19 J 1 e V = 2.96 ⋅ 1 0 − 19 J . KE_{max}=5.52\cdot10^{-19}\ J-1.6\ eV\cdot \dfrac{1.6\cdot10^{-19}\ J}{1\ eV}=2.96\cdot10^{-19}\ J. K E ma x = 5.52 ⋅ 1 0 − 19 J − 1.6 e V ⋅ 1 e V 1.6 ⋅ 1 0 − 19 J = 2.96 ⋅ 1 0 − 19 J . b) We can find the speed of an emitted electrons from the definition of the kinetic energy:
K E = 1 2 m v 2 , KE=\dfrac{1}{2}mv^2, K E = 2 1 m v 2 , v = 2 K E m , v=\sqrt{\dfrac{2KE}{m}}, v = m 2 K E , v = 2 ⋅ 2.96 ⋅ 1 0 − 19 J 9.1 ⋅ 1 0 − 31 k g = 8.06 ⋅ 1 0 5 m s . v=\sqrt{\dfrac{2\cdot 2.96\cdot10^{-19}\ J}{9.1\cdot10^{-31}\ kg}}=8.06\cdot10^5\ \dfrac{m}{s}. v = 9.1 ⋅ 1 0 − 31 k g 2 ⋅ 2.96 ⋅ 1 0 − 19 J = 8.06 ⋅ 1 0 5 s m . Answer:
a) K E m a x = 2.96 ⋅ 1 0 − 19 J . KE_{max}=2.96\cdot10^{-19}\ J. K E ma x = 2.96 ⋅ 1 0 − 19 J .
b) v = 8.06 ⋅ 1 0 5 m s . v=8.06\cdot10^5\ \dfrac{m}{s}. v = 8.06 ⋅ 1 0 5 s m .
Comments