Samer's weight on earth is 588 N. Using the law of universal gravitation, what will be his weight on Mars?
F=GMmR2F=G\frac{Mm}{R^2}F=GR2Mm
Fe=GMemRe2F_e=G\frac{M_em}{R_e^2}Fe=GRe2Mem and Fm=GMmmRm2F_m=G\frac{M_mm}{R_m^2}Fm=GRm2Mmm →\to→
FeRe2GMe=FmRm2GMm→Fm=FeRe2MmMeRm2=\frac{F_eR_e^2}{GM_e}=\frac{F_mR_m^2}{GM_m}\to F_m=\frac{F_eR_e^2M_m}{M_eR_m^2}=GMeFeRe2=GMmFmRm2→Fm=MeRm2FeRe2Mm=
=588⋅63710002⋅6.39⋅10235.972⋅1024⋅33760002=224(N)=\frac{588\cdot 6371000^2\cdot 6.39\cdot 10^{23}}{5.972\cdot 10^{24} \cdot 3376000^2}=224(N)=5.972⋅1024⋅33760002588⋅63710002⋅6.39⋅1023=224(N) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments