Assuming that the frequency v of vibrating string may depend upon (1) applied load f(2) length (1) of string and (3) was per unit length of string (4( prove that u k1|v✓f\u where u=m\1
ν∝Falbmc\nu \propto F^al^bm^cν∝Falbmc
dimF=[MLT−2]\dim F=[MLT^{-2}]dimF=[MLT−2]
diml=[L]\dim l=[L]diml=[L]
dimm=[ML−1]\dim m=[ML^{-1}]dimm=[ML−1]
dimν=[T−1]\dim \nu=[T^{-1}]dimν=[T−1]
[M0L0T−1]=[MLT−2]a[L]b[ML−1]c=Ma+cLa+b−cT−2c→[M^0L^0T^{-1}]=[MLT^{-2}]^a[L]^b[ML^{-1}]^c=M^{a+c}L^{a+b-c}T^{-2c}\to[M0L0T−1]=[MLT−2]a[L]b[ML−1]c=Ma+cLa+b−cT−2c→
a+c=0a+c=0a+c=0
a+b−c=0a+b-c=0a+b−c=0
−2a=−1-2a=-1−2a=−1
So, we have
a=12a=\frac{1}{2}a=21
b=−1b=-1b=−1
c=−12c=-\frac{1}{2}c=−21
ν∝Falbmc=1lFm\nu \propto F^al^bm^c=\frac{1}{l}\sqrt{\frac{F}{m}}ν∝Falbmc=l1mF . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments