F n e t = F x 2 + F y 2 F_{net}=\sqrt{F_x^2+F_y^2} F n e t = F x 2 + F y 2
F x = k q q L 2 + k q q ( L 2 + W 2 ) 2 cos α F_x=k\frac{qq}{L^2}+k\frac{qq}{(\sqrt{L^2+W^2})^2}\cos\alpha F x = k L 2 qq + k ( L 2 + W 2 ) 2 qq cos α
cos α = L L 2 + W 2 = 0.6 0. 6 2 + 0.1 5 2 = 0.9701 → α = 14 ° \cos\alpha=\frac{L}{\sqrt{L^2+W^2}}=\frac{0.6}{\sqrt{0.6^2+0.15^2}}=0.9701\to \alpha=14° cos α = L 2 + W 2 L = 0. 6 2 + 0.1 5 2 0.6 = 0.9701 → α = 14°
F x = k q q L 2 + k q q ( L 2 + W 2 ) 2 cos α = 9 ⋅ 1 0 9 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 0. 6 2 + F_x=k\frac{qq}{L^2}+k\frac{qq}{(\sqrt{L^2+W^2})^2}\cos\alpha=9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{0.6^2}+ F x = k L 2 qq + k ( L 2 + W 2 ) 2 qq cos α = 9 ⋅ 1 0 9 0. 6 2 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 +
+ 9 ⋅ 1 0 9 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 ( 0. 6 2 + 0.1 5 2 ) 2 cos 14 ° = 4.78 ( N ) +9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{(\sqrt{0.6^2+0.15^2})^2}\cos14°=4.78(N) + 9 ⋅ 1 0 9 ( 0. 6 2 + 0.1 5 2 ) 2 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 cos 14° = 4.78 ( N )
F y = k q q W 2 + k q q ( L 2 + W 2 ) 2 sin α = 9 ⋅ 1 0 9 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 0.1 5 2 + F_y=k\frac{qq}{W^2}+k\frac{qq}{(\sqrt{L^2+W^2})^2}\sin\alpha=9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{0.15^2}+ F y = k W 2 qq + k ( L 2 + W 2 ) 2 qq sin α = 9 ⋅ 1 0 9 0.1 5 2 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 +
+ 9 ⋅ 1 0 9 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 ( 0. 6 2 + 0.1 5 2 ) 2 sin 14 ° = 40.57 ( N ) +9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{(\sqrt{0.6^2+0.15^2})^2}\sin14°=40.57(N) + 9 ⋅ 1 0 9 ( 0. 6 2 + 0.1 5 2 ) 2 10 ⋅ 1 0 − 6 ⋅ 10 ⋅ 1 0 − 6 sin 14° = 40.57 ( N )
F n e t = 4.7 8 2 + 40.5 7 2 = 40.85 ( N ) F_{net}=\sqrt{4.78^2+40.57^2}=40.85(N) F n e t = 4.7 8 2 + 40.5 7 2 = 40.85 ( N ) . Answer
tan γ = F y F x = 40.57 4.78 = 8.487 → γ ≈ 83 ° \tan\gamma =\frac{F_y}{F_x}=\frac{40.57}{4.78}=8.487\to \gamma\approx83° tan γ = F x F y = 4.78 40.57 = 8.487 → γ ≈ 83° (relative to the negative direction of the x-axis). Answer
Comments