Question #151761
Four identical point charges (q = + 10.0 microCoulombs) are located on the corners of a rectangle as shown in Figure P23.9. The dimensions of the rectangle are L = 60.0 cm and W = 15.0 cm. Calculate the magnitude and direction of the net electric force exerted on the charge at the lower left corner by the other three charges.
1
Expert's answer
2020-12-21T03:59:06-0500

Fnet=Fx2+Fy2F_{net}=\sqrt{F_x^2+F_y^2}


Fx=kqqL2+kqq(L2+W2)2cosαF_x=k\frac{qq}{L^2}+k\frac{qq}{(\sqrt{L^2+W^2})^2}\cos\alpha


cosα=LL2+W2=0.60.62+0.152=0.9701α=14°\cos\alpha=\frac{L}{\sqrt{L^2+W^2}}=\frac{0.6}{\sqrt{0.6^2+0.15^2}}=0.9701\to \alpha=14°


Fx=kqqL2+kqq(L2+W2)2cosα=910910106101060.62+F_x=k\frac{qq}{L^2}+k\frac{qq}{(\sqrt{L^2+W^2})^2}\cos\alpha=9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{0.6^2}+


+91091010610106(0.62+0.152)2cos14°=4.78(N)+9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{(\sqrt{0.6^2+0.15^2})^2}\cos14°=4.78(N)



Fy=kqqW2+kqq(L2+W2)2sinα=910910106101060.152+F_y=k\frac{qq}{W^2}+k\frac{qq}{(\sqrt{L^2+W^2})^2}\sin\alpha=9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{0.15^2}+


+91091010610106(0.62+0.152)2sin14°=40.57(N)+9\cdot10^9\frac{10\cdot10^{-6}\cdot10\cdot10^{-6}}{(\sqrt{0.6^2+0.15^2})^2}\sin14°=40.57(N)


Fnet=4.782+40.572=40.85(N)F_{net}=\sqrt{4.78^2+40.57^2}=40.85(N) . Answer


tanγ=FyFx=40.574.78=8.487γ83°\tan\gamma =\frac{F_y}{F_x}=\frac{40.57}{4.78}=8.487\to \gamma\approx83° (relative to the negative direction of the x-axis). Answer










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS