"F_{net}=\\sqrt{F_x^2+F_y^2}"
"F_x=k\\frac{qq}{L^2}+k\\frac{qq}{(\\sqrt{L^2+W^2})^2}\\cos\\alpha"
"\\cos\\alpha=\\frac{L}{\\sqrt{L^2+W^2}}=\\frac{0.6}{\\sqrt{0.6^2+0.15^2}}=0.9701\\to \\alpha=14\u00b0"
"F_x=k\\frac{qq}{L^2}+k\\frac{qq}{(\\sqrt{L^2+W^2})^2}\\cos\\alpha=9\\cdot10^9\\frac{10\\cdot10^{-6}\\cdot10\\cdot10^{-6}}{0.6^2}+"
"+9\\cdot10^9\\frac{10\\cdot10^{-6}\\cdot10\\cdot10^{-6}}{(\\sqrt{0.6^2+0.15^2})^2}\\cos14\u00b0=4.78(N)"
"F_y=k\\frac{qq}{W^2}+k\\frac{qq}{(\\sqrt{L^2+W^2})^2}\\sin\\alpha=9\\cdot10^9\\frac{10\\cdot10^{-6}\\cdot10\\cdot10^{-6}}{0.15^2}+"
"+9\\cdot10^9\\frac{10\\cdot10^{-6}\\cdot10\\cdot10^{-6}}{(\\sqrt{0.6^2+0.15^2})^2}\\sin14\u00b0=40.57(N)"
"F_{net}=\\sqrt{4.78^2+40.57^2}=40.85(N)" . Answer
"\\tan\\gamma =\\frac{F_y}{F_x}=\\frac{40.57}{4.78}=8.487\\to \\gamma\\approx83\u00b0" (relative to the negative direction of the x-axis). Answer
Comments
Leave a comment