2020-12-15T15:01:05-05:00
consider the binomial distribution pn (n) for n = 16 and p = q = 1/2. what is the value of pn (n) for n = σn/2? what is the value of the product pn (n = n)σn?
1
2020-12-17T09:03:36-0500
P N ( n ) = N ! n ! ( N − n ) ! p n q N − n p = q = 1 2 , σ n = N p q = N 2 P N ( n ) = N ! N 2 ! ( N − N 2 ) ! 1 2 N P_N(n)=\frac{N!}{n!(N-n)!}p^nq^{N-n}\\p=q=\frac{1}{2}, \sigma_n=\sqrt{Npq}=\frac{\sqrt{N}}{2}\\P_N(n)=\frac{N!}{\frac{\sqrt{N}}{2}!(N-\frac{\sqrt{N}}{2})!}\frac{1}{2^N} P N ( n ) = n ! ( N − n )! N ! p n q N − n p = q = 2 1 , σ n = Npq = 2 N P N ( n ) = 2 N ! ( N − 2 N )! N ! 2 N 1
P N ( n ) σ n = N ! N 2 ! ( N − N 2 ) ! 1 2 N N 2 \\P_N(n)\sigma_n=\frac{N!}{\frac{\sqrt{N}}{2}!(N-\frac{\sqrt{N}}{2})!}\frac{1}{2^N}\frac{\sqrt{N}}{2} P N ( n ) σ n = 2 N ! ( N − 2 N )! N ! 2 N 1 2 N
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Physics
Comments