The wave function can be written as follows:
y(x,t)=Asin(kx±ωt),
or,
y(x,t)=Acos(kx±ωt),
here, A is the amplitude of the wave, k=λ2π is the wave number, λ is the wavelength of the wave, ω is the angular frequency, y(x,t) is the transverse displacement.
1)
a) A=2.5 m.
b) ω=180 srad.
c) f=2πω=2π180 srad=28.65 Hz.
d) λ=k2π=20 mrad2π=0.31 m.
e) T=f1=28.65 Hz1=0.035 s.
f) v=fλ=28.65 Hz⋅0.31 m=8.88 sm.
d) y(x,t)=(2.5 m)sin(20 mrad⋅0.5 m+180 srad⋅2 s)=−1.62 m.
2)
a) A=0.35 m.
b) ω=120 srad.
c) f=2πω=2π120 srad=19.1 Hz.
d) λ=k2π=910 mrad2π=0.007 m.
e) T=f1=19.1 Hz1=0.052 s.
f) v=fλ=19.1 Hz⋅0.007 m=0.13 sm.
d) y(x,t)=(0.35 m)cos(910 mrad⋅0.5 m−120 srad⋅2 s)=0.07 m.
3)
a) A=0.6 m.
b) ω=90 srad.
c) f=2πω=2π90 srad=14.32 Hz.
d) λ=k2π=30 mrad2π=0.21 m.
e) T=f1=14.32 Hz1=0.07 s.
f) v=fλ=14.32 Hz⋅0.07 m=1.0 sm.
d) y(x,t)=(0.6 m)sin(30 mrad⋅0.5 m+90 srad⋅2 s)=−0.15 m.
Comments