Question #150281
There is a block on a horizontal surface. Coefficient of friction between the bar and the surface 0.2. If a force F is applied to the bar, directed upwards at an angle of 30° to the horizon, then the bar will move uniformly and rectilinearly along the table. Find the acceleration of the bar if a force of 1.4 N is applied to it in the same direction. Take g = 10 m/s^2.
1
Expert's answer
2020-12-21T10:39:48-0500

If the block moves without acceleration in the first case, write equilibrium of forces:


F cos30°f=0,N+F sin30°mg=0.N=mgF sin30°,f=μN=μ(mgF sin30°). F cos30°=μmgμF sin30°, F=μmgcos30°+μsin30°.F\text{ cos}30°-f=0,\\ N+F\text{ sin}30°-mg=0.\\ N=mg-F\text{ sin}30°,\\ f=\mu N=\mu(mg-F\text{ sin}30°).\\\space\\ F\text{ cos}30°=\mu mg-\mu F\text{ sin}30°,\\\space\\ F=\frac{\mu mg}{\text{cos}30°+\mu \text{sin}30°}.

Now, add 1.4 N to our force F:

(F+1.4) cos30°f=ma,N+(F+1.4) sin30°mg=0.N=mg(F+1.4) sin30°,f=μN=μ(mg(F+1.4) sin30°). a=(F+1.4) cos30°fm, a=F cos30°+1.4 cos30°μmgμF sin30°1.4μ sin30°)m, a=F(cos30°μ sin30°)+1.4(cos30°μ sin30°)μmgm, a=F(cos30°μ sin30°)+1.4(cos30°μ sin30°)mμg.(F+1.4)\text{ cos}30°-f=ma,\\ N+(F+1.4)\text{ sin}30°-mg=0.\\ N=mg-(F+1.4)\text{ sin}30°,\\ f=\mu N=\mu(mg-(F+1.4)\text{ sin}30°).\\\space\\ a=\frac{(F+1.4)\text{ cos}30°-f}{m},\\\space\\ a=\frac{F\text{ cos}30°+1.4\text{ cos}30°-\mu mg-\mu F\text{ sin}30°-1.4\mu \text{ sin}30°)}{m},\\\space\\ a=\frac{F(\text{cos}30°-\mu \text{ sin}30°)+1.4(\text{cos}30°-\mu\text{ sin}30°)-\mu mg}{m},\\\space\\ a=\frac{F(\text{cos}30°-\mu \text{ sin}30°)+1.4(\text{cos}30°-\mu\text{ sin}30°)}{m}-\mu g.

Substitute F we found previously:


a=μg(cos30°μ sin30°cos30°+μsin30°1)+1.4(cos30°μ sin30°)m.a=\mu g\bigg(\frac{\text{cos}30°-\mu \text{ sin}30°}{\text{cos}30°+\mu \text{sin}30°}-1\bigg)+\frac{1.4(\text{cos}30°-\mu\text{ sin}30°)}{m}.


With given numerical values, the answer is


a=[1.59+1.07m] m/s2.a=\bigg[1.59+\frac{1.07}{m}\bigg]\text{ m/s}^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS