If the block moves without acceleration in the first case, write equilibrium of forces:
F cos30°−f=0,N+F sin30°−mg=0.N=mg−F sin30°,f=μN=μ(mg−F sin30°). F cos30°=μmg−μF sin30°, F=cos30°+μsin30°μmg. Now, add 1.4 N to our force F:
(F+1.4) cos30°−f=ma,N+(F+1.4) sin30°−mg=0.N=mg−(F+1.4) sin30°,f=μN=μ(mg−(F+1.4) sin30°). a=m(F+1.4) cos30°−f, a=mF cos30°+1.4 cos30°−μmg−μF sin30°−1.4μ sin30°), a=mF(cos30°−μ sin30°)+1.4(cos30°−μ sin30°)−μmg, a=mF(cos30°−μ sin30°)+1.4(cos30°−μ sin30°)−μg. Substitute F we found previously:
a=μg(cos30°+μsin30°cos30°−μ sin30°−1)+m1.4(cos30°−μ sin30°).
With given numerical values, the answer is
a=[1.59+m1.07] m/s2.
Comments