If the block moves without acceleration in the first case, write equilibrium of forces:
Now, add 1.4 N to our force F:
"(F+1.4)\\text{ cos}30\u00b0-f=ma,\\\\\nN+(F+1.4)\\text{ sin}30\u00b0-mg=0.\\\\\nN=mg-(F+1.4)\\text{ sin}30\u00b0,\\\\\nf=\\mu N=\\mu(mg-(F+1.4)\\text{ sin}30\u00b0).\\\\\\space\\\\\na=\\frac{(F+1.4)\\text{ cos}30\u00b0-f}{m},\\\\\\space\\\\\na=\\frac{F\\text{ cos}30\u00b0+1.4\\text{ cos}30\u00b0-\\mu mg-\\mu F\\text{ sin}30\u00b0-1.4\\mu \\text{ sin}30\u00b0)}{m},\\\\\\space\\\\\na=\\frac{F(\\text{cos}30\u00b0-\\mu \\text{ sin}30\u00b0)+1.4(\\text{cos}30\u00b0-\\mu\\text{ sin}30\u00b0)-\\mu mg}{m},\\\\\\space\\\\\na=\\frac{F(\\text{cos}30\u00b0-\\mu \\text{ sin}30\u00b0)+1.4(\\text{cos}30\u00b0-\\mu\\text{ sin}30\u00b0)}{m}-\\mu g."Substitute F we found previously:
With given numerical values, the answer is
Comments
Leave a comment