Question #150212
The wooden box is thrown with some initial speed in the horizontal plane and after crossing the twilight 5 m for 2 s it stops. Calculate the coefficient of sliding friction.
1
Expert's answer
2020-12-15T11:47:44-0500

Let's first find the initial velocity of the box:


d=v0+v2t,d=\dfrac{v_0+v}{2}t,v0=2dtv=25 m2 s0=5 ms.v_0=\dfrac{2d}{t}-v=\dfrac{2\cdot 5\ m}{2\ s}-0=5\ \dfrac{m}{s}.

Then, we can find the deceleration of the box:


v=v0+at,v=v_0 + at,a=vv0t=0 ms5 ms2 s=2.5 ms2.a=\dfrac{v-v_0}{t}=\dfrac{0\ \dfrac{m}{s}-5\ \dfrac{m}{s}}{2\ s}=-2.5\ \dfrac{m}{s^2}.

The sign minus means that the box decelerates.

Finally, from the Newton's Second Law of Motion we can find the coefficient of sliding friction:


F=ma,\sum F=ma,Fk.fr.=ma,F_{k.fr.}=ma,μkmg=ma,-\mu_k mg=ma,μk=ag=2.5 ms29.8 ms2=0.25\mu_k=-\dfrac{a}{g}=-\dfrac{-2.5\ \dfrac{m}{s^2}}{9.8\ \dfrac{m}{s^2}}=0.25

Answer:

μk=0.25\mu_k=0.25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS