Let's first find the initial velocity of the box:
"d=\\dfrac{v_0+v}{2}t,""v_0=\\dfrac{2d}{t}-v=\\dfrac{2\\cdot 5\\ m}{2\\ s}-0=5\\ \\dfrac{m}{s}."Then, we can find the deceleration of the box:
"v=v_0 + at,""a=\\dfrac{v-v_0}{t}=\\dfrac{0\\ \\dfrac{m}{s}-5\\ \\dfrac{m}{s}}{2\\ s}=-2.5\\ \\dfrac{m}{s^2}."The sign minus means that the box decelerates.
Finally, from the Newton's Second Law of Motion we can find the coefficient of sliding friction:
"\\sum F=ma,""F_{k.fr.}=ma,""-\\mu_k mg=ma,""\\mu_k=-\\dfrac{a}{g}=-\\dfrac{-2.5\\ \\dfrac{m}{s^2}}{9.8\\ \\dfrac{m}{s^2}}=0.25"Answer:
"\\mu_k=0.25"
Comments
Leave a comment