Question #150206
A modern riffle can fire a bullet from 180 m/s to 1500 m/s.

a. Compute for the maximum height of a bullet fired by a riffle with an average velocity of 500m/s at an angle of 800.
1
Expert's answer
2020-12-14T07:28:55-0500

Let's write the equation of motion of the bullet in vertical direction:


y=v0tsinθ12gt2,(1)y=v_0tsin\theta-\dfrac{1}{2}gt^2, (1)

here, v0=500 msv_0 = 500\ \dfrac{m}{s} is the initial velocity of the bullet, tt is the time of flight of the bullet, θ=80\theta=80^{\circ} is the launch angle, yy is the vertical displacement of the bullet (or the height) and g=9.8 ms2g=9.8\ \dfrac{m}{s^2} is the acceleration due to gravity.

Let's first find the time that the bullet takes to reach the maximum height from the kinematic equation:


vy=v0sinθgtrise,v_y=v_0sin\theta-gt_{rise},0=v0sinθgtrise,0=v_0sin\theta-gt_{rise},trise=v0sinθg.t_{rise}=\dfrac{v_0sin\theta}{g}.

Then, we can substitute triset_{rise} into the first equation and find the maximum height:


ymax=v0sinθv0sinθg12g(v0sinθg)2,y_{max}=v_0sin\theta\cdot\dfrac{v_0sin\theta}{g}-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=v02sin2θ2g,y_{max}=\dfrac{v_0^2sin^2\theta}{2g},ymax=(500 ms)2sin28029.8 ms2=12370 m=12.37 km.y_{max}=\dfrac{(500\ \dfrac{m}{s})^2\cdot sin^280^{\circ}}{2\cdot 9.8\ \dfrac{m}{s^2}}=12370\ m=12.37\ km.

Answer:

ymax=12370 m=12.37 km.y_{max}=12370\ m=12.37\ km.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS