So,
"t=\\frac{2v_0\\sin\\alpha}{g}\\to v_0=\\frac{gt}{2\\sin\\alpha}=\\frac{9.8\\cdot 2.8}{2\\sin45\u00b0}=19.4(m\/s)"
Assume that "\\alpha=55\u00b0" . We get
"t=\\frac{2v_0\\sin\\alpha}{g}=\\frac{2\\cdot 19.4\\cdot\\sin55\u00b0}{9.8}=3.24(s)"
"l=\\frac{v_0^2\\sin(2\\alpha)}{g}=\\frac{19.4^2\\cdot\\sin(2\\cdot55\u00b0)}{9.8}=36(m)"
If the athlete kicks another ball with the same speed, but at an angle between 45° and 55° then the flight time will increase and the flight range will decrease.
Comments
Leave a comment