Question #149346
A 5.0 kg object oscillates on a spring with a spring constant of 180 N/m. The damping constant is 0.20 kg/s. The system is driven by a sinusoidal force of maximum value 50 N and an angular frequency of 20 rad/s.
i) Determine the amplitude and phase lag of the oscillations.
ii) If the driving frequency is varied, at what frequency will resonance occur?
iii) Determine the maximum amplitude the system could possibly have.
1
Expert's answer
2020-12-10T10:06:08-0500

ω0=km=1805=6(rad/s)\omega_0=\sqrt{\frac{k}{m}}=\sqrt{\frac{180}{5}}=6(rad/s)



(i) A=F0m(ω02ω2)2+4β2ω2=505(62202)2+40.22202=0.027(m)A=\frac{F_0}{m\sqrt{(\omega_0^2-\omega^2)^2+4\beta^2\omega^2}}=\frac{50}{5\cdot\sqrt{(6^2-20^2)^2+4\cdot0.2^2\cdot20^2}}=0.027(m)


tanϕ=2βωω2ω02=20.22020262=0.022\tan\phi=\frac{2\beta\omega}{\omega^2-\omega_0^2}=\frac{2\cdot0.2\cdot20}{20^2-6^2}=0.022\to ϕ=1.26°\phi=1.26°



(ii) ωres=ω022β2=6220.22=5.99(rad/s)\omega_{res}=\sqrt{\omega_0^2-2\beta^2}=\sqrt{6^2-2\cdot0.2^2}=5.99(rad/s)



(iii) Ares=F0/m2βω02β2=50/520.2620.22=4.17(m)A_{res}=\frac{F_0/m}{2\beta\sqrt{\omega_0^2-\beta^2}}=\frac{50/5}{2\cdot0.2\sqrt{6^2-0.2^2}}=4.17(m)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS