Question #147022
A wire 100 cm long with a diameter of 1.5 mm. The material is stretched to the other end with a 200
Ib force. After the application of the force, the length of wire becomes 100.01 cm. Find the stress,
strain, and the Young’s Modulus of the wire.
1
Expert's answer
2020-11-27T10:11:57-0500

a) We can find the stress from the formula:


σ=FA=200 lb(1 N0.2248 lb)π(1.5103 m)24=503106 Pa=503 MPa.\sigma=\dfrac{F}{A}=\dfrac{200\ lb\cdot (\dfrac{1\ N}{0.2248\ lb})}{\dfrac{\pi(1.5\cdot10^{-3}\ m)^2}{4}}=503\cdot10^6\ Pa=503\ MPa.

b) We can find strain from the formula:


ϵ=ΔLL0=100.01 cm100 cm100 cm=1.0104.\epsilon=\dfrac{\Delta L}{L_0}=\dfrac{100.01\ cm-100\ cm}{100\ cm}=1.0\cdot10^{-4}.

c) We can find Young’s Modulus of the wire from the formula:

E=σϵ=503106 Pa1.0104=5030109 Pa=5030 GPa.E=\dfrac{\sigma}{\epsilon}=\dfrac{503\cdot10^6\ Pa}{1.0\cdot10^{-4}}=5030\cdot10^9\ Pa=5030\ GPa.

Answer:

a) σ=503106 Pa=503 MPa.\sigma=503\cdot10^6\ Pa=503\ MPa.

b) ϵ=1.0104.\epsilon=1.0\cdot10^{-4}.

c) E=5030109 Pa=5030 GPa.E=5030\cdot10^9\ Pa=5030\ GPa.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS