Question #145722
If a car of mass 400 kg reduces speed from 80 km/h to 34 km/h in 17s. Calculate the braking power required to give this change of speed.
1
Expert's answer
2020-11-23T10:27:26-0500

Let's first convert km/h to m/s:


vi=(80 kmh)(1000 m1 km)(1 h3600 s)=22.22 ms,v_i=(80\ \dfrac{km}{h})\cdot (\dfrac{1000\ m}{1\ km})\cdot(\dfrac{1\ h}{3600\ s})=22.22\ \dfrac{m}{s},vf=(34 kmh)(1000 m1 km)(1 h3600 s)=9.44 ms.v_f=(34\ \dfrac{km}{h})\cdot (\dfrac{1000\ m}{1\ km})\cdot(\dfrac{1\ h}{3600\ s})=9.44\ \dfrac{m}{s}.

We can find the braking power required to give this change of speed from the definition of the power:


P=Wt,P=\dfrac{W}{t},

here, PP is the braking power, WW is the work done by the braking force to change the speed from 80 km/h to 34 km/h, tt is time.

We can find the work done by the braking force from the Work-Kinetic Energy Theorem:


KEfKEi=W,KE_f-KE_i=-W,W=(12mvf212mvi2)=12m(vf2vi2),W=-(\dfrac{1}{2}mv_f^2-\dfrac{1}{2}mv_i^2)=-\dfrac{1}{2}m(v_f^2-v_i^2),W=12 400 kg ((9.44 ms)2(22.22 ms)2)=80923 J.W=-\dfrac{1}{2}\cdot\ 400\ kg\ \cdot((9.44\ \dfrac{m}{s})^2-(22.22\ \dfrac{m}{s})^2)=80923\ J.

Finally, substituting WW into the formula for the power we can calculate the braking power required to give this change of speed:


P=Wt=80923 J17 s=4760 W=4.76 kW.P=\dfrac{W}{t}=\dfrac{80923\ J}{17\ s}=4760\ W=4.76\ kW.

Answer:

P=4760 W=4.76 kW.P=4760\ W=4.76\ kW.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS