Question #144532
A cannon ball is fired with an initial velocity of 25m/s at 53º from the horizontal. The cannon is
situated on a cliff 60 m high. Find the (a) maximum height the cannon ball reached; (b) the
maximum horizontal distance it reached; (c) total time the cannon ball is in the air.
1
Expert's answer
2020-11-16T07:48:06-0500

a) Let's write the equations of motion of the cannon ball in horizontal and vertical directions:


x=v0tcosθ,(1)x=v_0tcos\theta, (1)y=y0+v0tsinθ12gt2,(2)y=y_0+v_0tsin\theta-\dfrac{1}{2}gt^2, (2)

here, xx is the horizontal displacement of the cannon ball (or the range of the cannon ball), v0=25.0 msv_0=25.0\ \dfrac{m}{s} is the initial velocity of the cannon ball, tt is the total flight time of the cannon ball, θ=53\theta=53^{\circ} is the launch angle, yy is the vertical displacement of the cannon ball (or the height), y0=60.0 my_0=60.0\ m is the initial height from which the cannon ball was fired and g=9.8 ms2g=9.8\ \dfrac{m}{s^2} is the acceleration due to gravity.

Let's first find the time that the cannon ball takes to reach the maximum height from the kinematic equation:


vy=v0sinθgtrise,v_y=v_0sin\theta-gt_{rise},0=v0sinθgtrise,0=v_0sin\theta-gt_{rise},trise=v0sinθg.t_{rise}=\dfrac{v_0sin\theta}{g}.

Then, we can substitute triset_{rise} into the second equation and find the maximum height:


ymax=y0+v0sinθv0sinθg12g(v0sinθg)2,y_{max}=y_0+v_0sin\theta\cdot\dfrac{v_0sin\theta}{g}-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=y0+v02sin2θ2g,y_{max}=y_0+\dfrac{v_0^2sin^2\theta}{2g},ymax=60 m+(25.0 ms)2sin25329.8 ms2=80.3 m.y_{max}=60\ m+\dfrac{(25.0\ \dfrac{m}{s})^2\cdot sin^253^{\circ}}{2\cdot 9.8\ \dfrac{m}{s^2}}=80.3\ m.


(b)-(c) Let's first find total flight time of the cannon ball:


y=y0+v0tsinθ12gt2,y=y_0+v_0tsin\theta-\dfrac{1}{2}gt^2,0=60+25tsin53129.8t2,0=60+25tsin53^{\circ}-\dfrac{1}{2}\cdot 9.8t^2,4.9t220t60=0.4.9t2-20t-60=0.

This quadratic equation has two roots:


t1=b+b24ac2a=20+(20)2+117624.9=6.09 s,t_1=\dfrac{-b+\sqrt{b^2-4ac}}{2a}=\dfrac{20+\sqrt{(-20)^2+1176}}{2\cdot 4.9}=6.09\ s,t2=bb24ac2a=20(20)2+117624.9=2.01 s.t_2=\dfrac{-b-\sqrt{b^2-4ac}}{2a}=\dfrac{20-\sqrt{(-20)^2+1176}}{2\cdot 4.9}=-2.01\ s.


Since time can't be negative, the correct answer is t=6.09 s.t=6.09\ s.

Finall, we can substitute tt into the first equation and find the maximum horizontal distance reached by the cannon ball:


x=v0tcosθ=25.0 ms6.09 scos53=91.6 m.x=v_0tcos\theta=25.0\ \dfrac{m}{s}\cdot 6.09\ s\cdot cos53^{\circ}=91.6\ m.

Answer:

(a) ymax=80.3 m.y_{max}=80.3\ m.

(b) x=91.6 m.x=91.6\ m.

(c) t=6.09 s.t=6.09\ s.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS