Question #144276
A missile is fired with the speed of 100 m/s in a direction 30° above the horizontal. Determine the maximum height to which it rises.
1
Expert's answer
2020-11-16T07:50:53-0500

Let's write the equation of motion of the missile in vertical direction:


y=v0trisesinθ12gtrise2,y=v_0t_{rise}sin\theta-\dfrac{1}{2}gt_{rise}^2,


here, v0=100 msv_0=100\ \dfrac{m}{s} is the initial velocity of the missile, triset_{rise} is the time that missile takes to reach the maximum height, θ=30\theta=30^{\circ} is the launch angle, yy is the vertical displacement of the missile (or the height) and g=9.8 ms2g=9.8\ \dfrac{m}{s^2} is the acceleration due to gravity.

Let's first find the time that the missile takes to reach the maximum height from the kinematic equation:


vy=v0sinθgtrise,v_y=v_0sin\theta-gt_{rise},0=v0sinθgtrise,0=v_0sin\theta-gt_{rise},trise=v0sinθg.t_{rise}=\dfrac{v_0sin\theta}{g}.


Then, we can substitute triset_{rise} into the equation for yy and find the maximum height:


ymax=v0sinθv0sinθg12g(v0sinθg)2,y_{max}=v_0sin\theta\cdot\dfrac{v_0sin\theta}{g}-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=v02sin2θ2g,y_{max}=\dfrac{v_0^2sin^2\theta}{2g},ymax=(100 ms)2sin23029.8 ms2=127.5 m.y_{max}=\dfrac{(100\ \dfrac{m}{s})^2\cdot sin^230^{\circ}}{2\cdot 9.8\ \dfrac{m}{s^2}}=127.5\ m.

Answer:

ymax=127.5 m.y_{max}=127.5\ m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS