(a) The diagram:
(b) To find the acceleration, use Newton's second law (regular one with forces and the one for case of rotation). Assume positive x is to the right and y is to upward.
"T_1 \u2212 f_1 = m_1a,\\\\\nN_1-m_1g=0.\\\\\nT_1 = \u00b5m_1g + m_1a."
"\u2212T_2 \u2212 f_2 + m_2g \\text{ sin}\u03b8 = m_2a,\\\\\nN_2-m_2g\\text{ cos}\\theta=0.\\\\\nT_2 = m_2g \\text{ sin}\u03b8 \u2212 \u00b5m_2g \\text{ cos}\u03b8 \u2212 m_2a"
"\u03c4_\\text{net} = I\u03b1,\\\\\nT_2R \u2212 T_1R = I\\frac aR,\\\\\\space\\\\\na =\\frac{2R^2}{MR^2}(T_2 \u2212 T_1)."
Express the acceleration:
"a=\\frac{2g[m_2 \\text{ sin} \u03b8 \u2212 \u00b5(m_2 \\text{ cos} \u03b8 +m_1)]}{M + 2(m_1 + m_2)}=0.309\\text{ m\/s}^2."
(c) Using the equations for the objects of the system in part (b), find the tensions:
"T_1 = m_1(\u00b5g + a)=7.674\\text{ N},\\\\\nT_2 = m_2(g \\text{ sin} \u03b8 \u2212 \u00b5g\\text{ cos} \u03b8 \u2212 a)=9.21\\text{ N}."
Comments
Leave a comment