Question #140207
test the divergence theorem for the function v= xyî+2yzj+3zxk Take as your volume the cube with side of length 1
1
Expert's answer
2020-10-29T07:02:52-0400
div v=y+2z+3xdiv\ \vec{v}=y+2z+3x

The volume integral of it over the volume of the cube is equal to


V=01dx01dy01dz(y+2z+3x)=01dx01dy(y+1+3x)=01dx(1.5+3x)=3V=\smallint^1_0 dx\smallint^1_0 dy \smallint^1_0 dz (y+2z+3x)\\=\smallint^1_0 dx\smallint^1_0 dy (y+1+3x)\\=\smallint^1_0 dx(1.5+3x)=3

V1=01dx01dy(3x)=1.5V2=01dx01dz(2z)=1V3=01dy01dz(y)=0.5V_1=\smallint^1_0 dx\smallint^1_0 dy (3x)=1.5\\V_2=\smallint^1_0 dx\smallint^1_0 dz (2z)=1\\\\V_3=\smallint^1_0 dy\smallint^1_0 dz (y)=0.5

V1+V2+V3=1.5+1+0.5=3=VV_1+V_2+V_3=1.5+1+0.5=3=V

The surface integral across the surface of the cube is equal to the sum of the surface integrals across each of the 6 faces of the cube, and is thus equal to the volume integral of it over the volume of the cube.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS