d i v v ⃗ = y + 2 z + 3 x div\ \vec{v}=y+2z+3x d i v v = y + 2 z + 3 x The volume integral of it over the volume of the cube is equal to
V = ∫ 0 1 d x ∫ 0 1 d y ∫ 0 1 d z ( y + 2 z + 3 x ) = ∫ 0 1 d x ∫ 0 1 d y ( y + 1 + 3 x ) = ∫ 0 1 d x ( 1.5 + 3 x ) = 3 V=\smallint^1_0 dx\smallint^1_0 dy \smallint^1_0 dz (y+2z+3x)\\=\smallint^1_0 dx\smallint^1_0 dy (y+1+3x)\\=\smallint^1_0 dx(1.5+3x)=3 V = 0 ∫ 1 d x 0 ∫ 1 d y 0 ∫ 1 d z ( y + 2 z + 3 x ) = 0 ∫ 1 d x 0 ∫ 1 d y ( y + 1 + 3 x ) = 0 ∫ 1 d x ( 1.5 + 3 x ) = 3
V 1 = ∫ 0 1 d x ∫ 0 1 d y ( 3 x ) = 1.5 V 2 = ∫ 0 1 d x ∫ 0 1 d z ( 2 z ) = 1 V 3 = ∫ 0 1 d y ∫ 0 1 d z ( y ) = 0.5 V_1=\smallint^1_0 dx\smallint^1_0 dy (3x)=1.5\\V_2=\smallint^1_0 dx\smallint^1_0 dz (2z)=1\\\\V_3=\smallint^1_0 dy\smallint^1_0 dz (y)=0.5 V 1 = 0 ∫ 1 d x 0 ∫ 1 d y ( 3 x ) = 1.5 V 2 = 0 ∫ 1 d x 0 ∫ 1 d z ( 2 z ) = 1 V 3 = 0 ∫ 1 d y 0 ∫ 1 d z ( y ) = 0.5
V 1 + V 2 + V 3 = 1.5 + 1 + 0.5 = 3 = V V_1+V_2+V_3=1.5+1+0.5=3=V V 1 + V 2 + V 3 = 1.5 + 1 + 0.5 = 3 = V The surface integral across the surface of the cube is equal to the sum of the surface integrals across each of the 6 faces of the cube, and is thus equal to the volume integral of it over the volume of the cube.
Comments