The velocity vector is:
"\\mathbf{v} = (v_x,v_y) = (17,-11)\\space m\/s" The magnitude is:
"v = \\sqrt{v_x^2 + v_y^2 } = \\sqrt{17^2 + (-11)^2 } \\approx 20.25\\space m\/s" The directon is:
"\\theta = \\arctan \\left( \\dfrac{v_y}{v_x} \\right) \\approx 327.1" Answer. "v = 20.25\\space m\/s" and "\\theta = 327.1" counting from the x-axis.
Comments
Leave a comment