Question #140106
A car accelerates uniformly from rest and reaches an angular speed of 22.0 m/s in
9.00 s. Assuming the diameter of a tire is 58.0 cm, (a) find the number of revolutions the tire makes during this motion, assuming that no slipping occurs. (b) What is the final angular speed of a tire in revolutions per second?
1
Expert's answer
2020-10-27T11:11:19-0400

Given:

ω0=0rad/s\omega_0=0\: \rm rad/s

v=22.0m/sv=22.0\: \rm m/s

t=9.00st=9.00\: \rm s

d=58.0cmd=58.0\:\rm cm

The final angular speed

ω=vR=22.00.58/2=75.9rad/s\omega=\frac{v}{R}=\frac{22.0}{0.58/2}=75.9\:\rm rad/s

(a)

ϕ=ω+ω02=75.9+0.002×9.00=341rad\phi=\frac{\omega+\omega_0}{2}=\rm \frac{75.9+0.00}{2}\times 9.00=341\: rad

N=ϕ2π=3412π=54.4N=\frac{\phi}{2\pi}=\frac{341}{2\pi}=54.4

(b)

n=2πω=6.28×75.9rad/s=477rev/sn=2\pi\omega=6.28\times 75.9\:\rm rad/s=477 \:\rm rev/s

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Corazon BRAGADO
03.12.21, 15:19

Thanks.

LATEST TUTORIALS
APPROVED BY CLIENTS