The focal length depends on refractive index, and radii of outer surfaces of the lens:
"\\frac{1}{f}=\\bigg(\\frac{n_\\text{lens}}{n_\\text{medium}}-1\\bigg)\\bigg(\\frac{1}{R_1}-\\frac{1}{R_2}\\bigg)." Rite this equation for air and water and divide the equations one by another:
"\\frac{1}{f_\\text{air}}=\\bigg(\\frac{n_\\text{lens}}{n_\\text{air}}-1\\bigg)\\bigg(\\frac{1}{R_1}-\\frac{1}{R_2}\\bigg),\\\\\\space\\\\\n\\frac{1}{f_\\text{water}}=\\bigg(\\frac{n_\\text{lens}}{n_\\text{water}}-1\\bigg)\\bigg(\\frac{1}{R_1}-\\frac{1}{R_2}\\bigg).\\\\\\space\\\\\n\\frac{f_\\text{water}}{f_\\text{air}}=\\frac{(n_\\text{lens}-n_\\text{air})n_\\text{water}}{(n_\\text{lens}-n_\\text{water})n_\\text{air}},\\\\\\space\\\\\nf_\\text{water}=f_\\text{air}\\frac{(n_\\text{lens}-n_\\text{air})n_\\text{water}}{(n_\\text{lens}-n_\\text{water})n_\\text{air}},\\\\\\space\\\\\n\nf_\\text{water}=20\\frac{(1.6-1)1.333}{(1.6-1.333)1}=59.9\\text{ cm}."
Comments
Leave a comment