Question #138401
A converging lens has a refractive index of 1.6. When the lens is used in air, its focal length is 20 cm. If it is immersed in water, its focal length is ?
1
Expert's answer
2020-10-19T13:19:56-0400

The focal length depends on refractive index, and radii of outer surfaces of the lens:


1f=(nlensnmedium1)(1R11R2).\frac{1}{f}=\bigg(\frac{n_\text{lens}}{n_\text{medium}}-1\bigg)\bigg(\frac{1}{R_1}-\frac{1}{R_2}\bigg).

Rite this equation for air and water and divide the equations one by another:


1fair=(nlensnair1)(1R11R2), 1fwater=(nlensnwater1)(1R11R2). fwaterfair=(nlensnair)nwater(nlensnwater)nair, fwater=fair(nlensnair)nwater(nlensnwater)nair, fwater=20(1.61)1.333(1.61.333)1=59.9 cm.\frac{1}{f_\text{air}}=\bigg(\frac{n_\text{lens}}{n_\text{air}}-1\bigg)\bigg(\frac{1}{R_1}-\frac{1}{R_2}\bigg),\\\space\\ \frac{1}{f_\text{water}}=\bigg(\frac{n_\text{lens}}{n_\text{water}}-1\bigg)\bigg(\frac{1}{R_1}-\frac{1}{R_2}\bigg).\\\space\\ \frac{f_\text{water}}{f_\text{air}}=\frac{(n_\text{lens}-n_\text{air})n_\text{water}}{(n_\text{lens}-n_\text{water})n_\text{air}},\\\space\\ f_\text{water}=f_\text{air}\frac{(n_\text{lens}-n_\text{air})n_\text{water}}{(n_\text{lens}-n_\text{water})n_\text{air}},\\\space\\ f_\text{water}=20\frac{(1.6-1)1.333}{(1.6-1.333)1}=59.9\text{ cm}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS