All these vectors have the following coordinates.
O A ⃗ = ( 6 cos 53 ° , 6 sin 53 ° ) ≈ ( 3.61 , 4.79 ) A B ⃗ = ( − 2 sin 63 ° , − 2 cos 63 ° ) ≈ ( − 1.78 , − 0.91 ) B C ⃗ = ( − 1.5 cos 51 ° , 1.5 sin 51 ° ) ≈ ( − 0.94 , 1.17 ) C D ⃗ = ( 0 , − 5 ) D E ⃗ = ( 0 , 3 ) E F ⃗ = ( 0 , 5 ) F G ⃗ = ( − 1.5 cos 44 ° , − 1.5 sin 44 ° ) ≈ ( − 1.08 , − 1.04 ) G H ⃗ = ( − 2 sin 63 ° , 2 cos 63 ° ) ≈ ( − 1.78 , 0.91 ) \vec{OA} = (6\cos 53\degree, 6\sin 53\degree ) \approx(3.61, 4.79 )\\
\vec{AB} = (-2\sin 63\degree, -2\cos 63\degree ) \approx(-1.78, -0.91 )\\
\vec{BC} = (-1.5\cos 51\degree, 1.5\sin 51\degree ) \approx(-0.94, 1.17 )\\
\vec{CD} = (0, -5 ) \\
\vec{DE} = (0, 3 )\\
\vec{EF} = (0, 5 ) \\
\vec{FG} = (-1.5\cos 44\degree, -1.5\sin 44\degree ) \approx(-1.08, -1.04 )\\
\vec{GH} = (-2\sin 63\degree, 2\cos 63\degree ) \approx(-1.78, 0.91 ) O A = ( 6 cos 53° , 6 sin 53° ) ≈ ( 3.61 , 4.79 ) A B = ( − 2 sin 63° , − 2 cos 63° ) ≈ ( − 1.78 , − 0.91 ) BC = ( − 1.5 cos 51° , 1.5 sin 51° ) ≈ ( − 0.94 , 1.17 ) C D = ( 0 , − 5 ) D E = ( 0 , 3 ) EF = ( 0 , 5 ) FG = ( − 1.5 cos 44° , − 1.5 sin 44° ) ≈ ( − 1.08 , − 1.04 ) G H = ( − 2 sin 63° , 2 cos 63° ) ≈ ( − 1.78 , 0.91 ) The shortcut will be:
O H ⃗ = O A ⃗ + A B ⃗ + B C ⃗ + C D ⃗ + D E ⃗ + E F ⃗ + F G ⃗ + G H ⃗ = = ( − 1.98 , 7.92 ) \vec{OH} = \vec{OA} + \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FG} + \vec{GH}=\\
= (-1.98, 7.92) O H = O A + A B + BC + C D + D E + EF + FG + G H = = ( − 1.98 , 7.92 ) The length of the shortcut pass is 8.16 k m 8.16\space km 8.16 km . The value of the shortcut path along the x axis is 1.98 k m 1.98 \space km 1.98 km .
Answer. 8.16 km, 1.68 km.
Comments