All these vectors have the following coordinates.
"\\vec{OA} = (6\\cos 53\\degree, 6\\sin 53\\degree ) \\approx(3.61, 4.79 )\\\\\n\\vec{AB} = (-2\\sin 63\\degree, -2\\cos 63\\degree ) \\approx(-1.78, -0.91 )\\\\\n\\vec{BC} = (-1.5\\cos 51\\degree, 1.5\\sin 51\\degree ) \\approx(-0.94, 1.17 )\\\\\n\\vec{CD} = (0, -5 ) \\\\\n\\vec{DE} = (0, 3 )\\\\\n\\vec{EF} = (0, 5 ) \\\\\n\\vec{FG} = (-1.5\\cos 44\\degree, -1.5\\sin 44\\degree ) \\approx(-1.08, -1.04 )\\\\\n\\vec{GH} = (-2\\sin 63\\degree, 2\\cos 63\\degree ) \\approx(-1.78, 0.91 )" The shortcut will be:
"\\vec{OH} = \\vec{OA} + \\vec{AB} + \\vec{BC} + \\vec{CD} + \\vec{DE} + \\vec{EF} + \\vec{FG} + \\vec{GH}=\\\\\n= (-1.98, 7.92)" The length of the shortcut pass is "8.16\\space km". The value of the shortcut path along the x axis is "1.98 \\space km".
Answer. 8.16 km, 1.68 km.
Comments
Leave a comment