Question #136800

A rocket moves straight upward, starting from rest with an acceleration of 29.4 m/s2. It runs out of fuel at the end of 4s and continues to coast upward, reaching a max height before falling back to Earth. 

(a) Find the rocket’s velocity and 

position at the end of 4 s. 

(b) Find the rocket’s max height.

(c) Find it’s velocity before crashing to the ground.



1
Expert's answer
2020-10-05T10:52:40-0400

a) We can find the rocket's velocity and position from the kinematic euations:


v=v0+at,v = v_0 + at,y=v0t+12at2,y = v_0t + \dfrac{1}{2}at^2,

here, v0=0 msv_0 = 0 \ \dfrac{m}{s} is the initial velocity of the rocket, a=29.4 ms2a = 29.4 \ \dfrac{m}{s^2} is the acceleration of the rocket, t=4 st = 4 \ s is the time during which the rocket runs out of fuel.

Then, we get:


v(t=4 s)=29.4 ms24 s=117.6 ms,v(t=4 \ s) = 29.4 \ \dfrac{m}{s^2} \cdot 4 \ s = 117.6 \ \dfrac{m}{s},y(t=4 s)=1229.4 ms2(4 s)2=235.2m.y(t=4 \ s) = \dfrac{1}{2} \cdot 29.4 \ \dfrac{m}{s^2} \cdot (4 \ s)^2 = 235.2 m.

b) Let's first find the distance traveled by the rocket from the end of 4s until it reaches max height:


vf2=vi2+2gy2,v_f^2 = v_i^2 + 2gy_2,

here, vf=0 msv_f = 0 \ \dfrac{m}{s} is the final velocity of the rocket, vi=117.6 msv_i = 117.6 \ \dfrac{m}{s} is the initial velocity of the rocket, g=9.8 ms2g = -9.8 \ \dfrac{m}{s^2} is the acceleration due to gravity, y2y_2 is the distance traveled by the rocket from the end of 4s until it reaches max height.

Then, from this equation we can find y2y_2:


y2=vf2vi22a=(0 ms)2(117.6 ms)22(9.8 ms2)=705.6 m.y_2= \dfrac{v_f^2-v_i^2}{2a}=\dfrac{(0 \ \dfrac{m}{s})^2-(117.6 \ \dfrac{m}{s})^2}{2 \cdot (-9.8 \ \dfrac{m}{s^2})} = 705.6 \ m.

Finally, we can find the rocket's max height:


hmax=y1+y2,h_{max} = y_1 + y_2,

here, y1=235.2 my_1 = 235.2 \ m is the distance traveled by the rocket at the end of 4s.

Therefore, we get:


hmax=235.2 m+705.6 m=941 m.h_{max}= 235.2 \ m + 705.6 \ m = 941 \ m.

c) We can find the rocket velocity before crashing to the ground from the kinematic equation:


vf2=vi2+2ghmax,v_f^2 = v_i^2 + 2gh_{max},vf=vi2+2ghmax,v_f = \sqrt{v_i^2 + 2gh_{max}},vf=(0 ms)2+29.8 ms2941 m=135.8 ms.v_f = \sqrt{(0 \ \dfrac{m}{s})^2 + 2 \cdot 9.8 \ \dfrac{m}{s^2} \cdot 941 \ m} = 135.8 \ \dfrac{m}{s}.

Answer:

a) v(t=4 s)=117.6 ms,y(t=4 s)=235.2m.v(t=4 \ s) = 117.6 \ \dfrac{m}{s}, y(t=4 \ s) = 235.2 m.

b) hmax=941 m.h_{max}=941 \ m.

c) vf=135.8 ms.v_f =135.8 \ \dfrac{m}{s}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Jumaomary
03.01.22, 19:27

This platform is really amazing,i can ask any question and is answered its really amazing

LATEST TUTORIALS
APPROVED BY CLIENTS