Calculate the time the officer will fall down:
"t=\\sqrt{\\frac{2h}{g}}=\\sqrt{\\frac{2\\cdot3}{9.8}}=0.782\\text{ s}."How far along the horizontal will the officer jump if he left the taller building at 5 m/s horizontally?
"R_o=vt=5\\cdot0.782=3.91\\text{ m}." We are sorry, officer. Thank you for your service.
Make calculations for the thief. The maximum height above the building where the jump started:
"h_\\text{max}=\\frac{v^2\\text{ sin}^2\\theta}{2g}."
And reaching the maximum height will take a time of
"t_\\text{up}=\\frac{v\\text{ sin}\\theta}{g}."
From the point of maximum height, to land, the thief will need to fall 3 meters more:
"H=3+h_\\text{max}."
Falling from this height will take a time of
"t_\\text{down}=\\sqrt{\\frac{2H}{g}}=\\sqrt{\\frac{2\\big(3+\\frac{v^2\\text{ sin}^2\\theta}{2g}\\big)}{g}}." The range will be equal to the horizontal speed times total time:
"R_t=v\\text{ cos}\\theta(t_\\text{up}+t_\\text{down}),\\\\\\space\\\\\nR_t=v\\text{ cos}\\theta\\bigg(\\frac{v\\text{ sin}\\theta}{g}+\\sqrt{\\frac{2\\big(3+\\frac{v^2\\text{ sin}^2\\theta}{2g}\\big)}{g}}\\bigg),\\\\\\space\\\\\nR_t=4.32\\text{ m}." The thief clears the gap for
"\\Delta R_t=R_t-G=4.32-4=0.32\\text{ m}."
Comments
Leave a comment