Distance of the first plane 720⋅1.9=1368(m)720\cdot 1.9=1368(m)720⋅1.9=1368(m)
Distance of the second plane 570⋅1.9=1083(m)570\cdot 1.9=1083(m)570⋅1.9=1083(m)
The angle between them 148°−48.5°=99.5°148°-48.5°=99.5°148°−48.5°=99.5°
Using the law of cosine d2=13682+10832−2⋅1368⋅1083⋅cos99.5°→d^2=1368^2+1083^2-2\cdot1368\cdot1083\cdot \cos99.5° \tod2=13682+10832−2⋅1368⋅1083⋅cos99.5°→
d≈1880(m)d\approx1880(m)d≈1880(m)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments