Question #134733
A wheel of 15 mm radius on a rotates on a stationary axle . it is uniformly Speed ed up from rest to a speed 500 rpm in a time of 30 s. Find.1- The angular acceleration of the wheel .2- The tangential acceleration of a point on its rim.3- The average angular speed .4- The angular displacement .5- The length of wheel.
1
Expert's answer
2020-09-24T11:09:04-0400

1) We can find the angular acceleration of the wheel from the kinematic equation:


ωf=ωi+αt,\omega_f = \omega_i + \alpha t,

here, ωi=0 rads\omega_i = 0 \ \dfrac{rad}{s} is the initial angular velocity of the wheel, ωf=(500 revmin)(2πrad1 rev)(1 min60 s)=52.36 rads\omega_f = (500 \ \dfrac{rev}{min}) \cdot (2 \pi \dfrac{rad}{1 \ rev}) \cdot (\dfrac{1 \ min}{60 \ s}) = 52.36 \ \dfrac{rad}{s} is the final angular velocity of the wheel, α\alpha is the angular acceleration of the wheel and t=30 st = 30 \ s is the time during which the wheel accelerates.

Then, from this formula we can calculate the angular acceleration of the wheel:


α=ωfωit=52.36 rads0 rads30 s=1.74 rads2.\alpha = \dfrac{\omega_f - \omega_i}{t} = \dfrac{52.36 \ \dfrac{rad}{s} - 0 \ \dfrac{rad}{s}}{30 \ s} = 1.74 \ \dfrac{rad}{s^2}.

2) We can find the tangential acceleration of the point on its rim from the formula:


at=rα,a_t = r \alpha,at=15 mm(1 m1000 mm)1.74 rads2=0.0261 ms2.a_t = 15 \ mm \cdot (\dfrac{1 \ m}{1000 \ mm}) \cdot 1.74 \ \dfrac{rad}{s^2} = 0.0261 \ \dfrac{m}{s^2}.

3)-4) Let's first find the angular displacement from the kinematic equation:


θ=ωit+12αt2,\theta = \omega_it + \dfrac{1}{2} \alpha t^2,θ=0+121.74 rads2(30 s)2=783 rad.\theta = 0 + \dfrac{1}{2} \cdot 1.74 \ \dfrac{rad}{s^2} \cdot (30 \ s)^2 = 783 \ rad.

Then, we can find the average angular speed from the formula:


ω=θt=783 rad30 s=26.1 rads.\omega = \dfrac{\theta}{t} = \dfrac{783 \ rad}{30 \ s} = 26.1 \ \dfrac{rad}{s}.

5) We can find the length of the wheel from the formula:


l=2πr=2π0.015 m=0.094 m.l =2 \pi r = 2 \cdot \pi \cdot 0.015 \ m = 0.094 \ m.

Answer:

1) α=1.74 rads2.\alpha = 1.74 \ \dfrac{rad}{s^2}.

2) at=0.0261 ms2.a_t = 0.0261 \ \dfrac{m}{s^2}.

3) ω=26.1 rads.\omega = 26.1 \ \dfrac{rad}{s}.

4) θ=783 rad.\theta = 783 \ rad.

5) l=0.094 m.l = 0.094 \ m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS