Question #134578
A ball is batted into the air and caught at a point 100 m distance horizontally in 4.0 seconds. Neglecting air resistance. Find the maximum height attain by the ball.
1
Expert's answer
2020-09-24T11:09:35-0400

The height of a body thrown at some angle above horizontal:


h=v2sin2θ2g.h=\frac{v^2\text{sin}^2\theta}{2g}.

The range is


R=v2 sin(2θ)g,  sin(2θ)=2cosθ sinθ, R=2v2cosθ sinθg.R=\frac{v^2\text{ sin}(2\theta)}{g},\\\space\\ \text{ sin}(2\theta)=2\text{cos}\theta\text{ sin}\theta,\\\space\\ R=\frac{2v^2\text{cos}\theta\text{ sin}\theta}{g}.

On the other hand, the range is


R=v cosθt, v cosθ=Rt.R=v\text{ cos}\theta \cdot t,\\\space\\ v\text{ cos}\theta =\frac{R}{t}.

Substitute to the equation with sine of a double angle:

R=2Rv sinθgt, v sinθ=gt2.R=\frac{2Rv\text{ sin}\theta}{gt},\\\space\\ v\text{ sin}\theta=\frac{gt}{2}.

Substitute this into the first equation for height:


h=(gt/2)22g=gt28=19.6 m.h=\frac{(gt/2)^2}{2g}=\frac{gt^2}{8}=19.6\text{ m}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS