Question #133791
A patient is given a blood transfusion through a hypodermic needle
inserted in a vein. The inner diameter of the 3.0-cm-long needle is 0.65 mm, and
the venous pressure of the patient is 20 mm Hg. What should the elevation
difference be between the needle and the bottle containing the blood so that the
transfusion proceeds at the rate of 18 mL/min? Assume that the plastic tube car-
rying the blood from the bottle to the needle introduces negligible resistance to
1
Expert's answer
2020-09-21T08:31:53-0400

The vein pressure in Pascals:


p1=20133.3=2666 Pa.p_1=20\cdot133.3=2666\text{ Pa}.

The density of blood is


ρ=1050 kg/m3.\rho=1050\text{ kg/m}^3.

The viscosity of blood:


η=0.004 Pas.\eta=0.004\text{ Pa}\cdot\text{s}.

Convert flow rate to normal units:


Q=18 cm3/min is 3107 m3/ s.Q=18 \text{ cm}^3/\text{min is }3\cdot10^{-7}\text{ m}^3/\text{ s}.

Write Poiseuille's equation and express the pressure caused by the liquid in the tube:


Q=(p2p1)πr48ηL, p2=p1+8QLηπr4.Q=\frac{(p_2-p_1)\pi r^4}{8\eta L},\\\space\\ p_2=p_1+\frac{8QL\eta}{\pi r^4}.

The height depends on pressure according to the following equation:


h=p2ρg, h=1ρg(p1+8QLηπr4), h=110509.8(2666+831070.030.0043.14(0.00065/2)4)= =1.06 m.h=\frac{p_2}{\rho g},\\\space\\ h=\frac{1}{\rho g}\bigg(p_1+\frac{8QL\eta}{\pi r^4}\bigg),\\\space\\ h=\frac{1}{1050\cdot9.8}\bigg(2666+\frac{8\cdot3\cdot10^{-7}\cdot0.03\cdot0.004}{3.14\cdot (0.00065/2)^4}\bigg)=\\\space\\ =1.06\text{ m}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS