Let's denote the velocity of the first car "\\mathbf{v}_1" and velocity of the second car "\\mathbf{v}_2". The relativistic velocity-addition formula is the following (see https://en.wikipedia.org/wiki/Velocity-addition_formula#General_configuration):
where "\\gamma_{v_2} = \\dfrac{1}{\\sqrt{1 - \\dfrac{v_2^2}{c^2}}} = \\dfrac{1}{\\sqrt{1 - \\dfrac{c^2}{3^2\\cdot c^2}}} =\n\\dfrac{3}{\\sqrt{8}}".
As far as velocities are perpendicular to each other, "(\\mathbf v_1 \\cdot \\mathbf v_2)\\mathbf v_2 = 0", then
The modulus of this relative velocity will be:
"|\\mathbf v|^2= \\left( \\dfrac{\\sqrt{8}}{3}\\mathbf v_1-\\mathbf v_2 \\right)\\left( \\dfrac{\\sqrt{8}}{3}\\mathbf v_1-\\mathbf v_2 \\right) = \\dfrac{8}{9}|\\mathbf v_1|^2 + |\\mathbf v_2|^2 = \\\\\n=\\dfrac{8}{9}\\dfrac{c^2}{9} + \\dfrac{c^2}{9} = \\dfrac{17c^2}{81}"
"v = \\sqrt{\\dfrac{17c^2}{81}} = \\dfrac{\\sqrt17}{9}c \\approx 0.46c"
Answer. 0.46c.
Comments
Leave a comment