Question #132793
two cars are moving with same velocity c/3.these are perpendicular to each other .find relative velocity.
1
Expert's answer
2020-09-21T08:33:50-0400

Let's denote the velocity of the first car v1\mathbf{v}_1 and velocity of the second car v2\mathbf{v}_2. The relativistic velocity-addition formula is the following (see https://en.wikipedia.org/wiki/Velocity-addition_formula#General_configuration):


v1v2v=11v1v2c2[v1γv2v2+1c2γv21+γv2(v1v2)v2]\mathbf v_1 \oplus \mathbf v_2 \equiv \mathbf v =\frac{1}{1 - \frac{\mathbf v_1 \cdot \mathbf v_2}{c^2}}\left[\frac{\mathbf v_1}{\gamma_{v_2}} - \mathbf v_2 + \frac{1}{c^2}\frac{\gamma_{v_2}}{1+\gamma_{v_2}}(\mathbf v_1 \cdot \mathbf v_2)\mathbf v_2\right]\\

where γv2=11v22c2=11c232c2=38\gamma_{v_2} = \dfrac{1}{\sqrt{1 - \dfrac{v_2^2}{c^2}}} = \dfrac{1}{\sqrt{1 - \dfrac{c^2}{3^2\cdot c^2}}} = \dfrac{3}{\sqrt{8}}.

As far as velocities are perpendicular to each other, (v1v2)v2=0(\mathbf v_1 \cdot \mathbf v_2)\mathbf v_2 = 0, then


v=110[v1γv2v2]=v1γv2v2=83v1v2\mathbf v =\frac{1}{1 - 0}\left[\frac{\mathbf v_1}{\gamma_{v_2}} - \mathbf v_2 \right] = \frac{\mathbf v_1}{\gamma_{v_2}} - \mathbf v_2 = \dfrac{\sqrt{8}}{3}\mathbf v_1-\mathbf v_2\\

The modulus of this relative velocity will be:

v2=(83v1v2)(83v1v2)=89v12+v22==89c29+c29=17c281|\mathbf v|^2= \left( \dfrac{\sqrt{8}}{3}\mathbf v_1-\mathbf v_2 \right)\left( \dfrac{\sqrt{8}}{3}\mathbf v_1-\mathbf v_2 \right) = \dfrac{8}{9}|\mathbf v_1|^2 + |\mathbf v_2|^2 = \\ =\dfrac{8}{9}\dfrac{c^2}{9} + \dfrac{c^2}{9} = \dfrac{17c^2}{81}

v=17c281=179c0.46cv = \sqrt{\dfrac{17c^2}{81}} = \dfrac{\sqrt17}{9}c \approx 0.46c

Answer. 0.46c.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS