Question #127000
Consider a bob attached to a vertical string. At t = 0, the bob is displaced to a new position where the string makes -8° with the vertical and is then released from rest. If the angular displacement θ(t) is written as a cosine function, then the phase constant φ is:
1
Expert's answer
2020-07-22T10:34:34-0400

The cosine law of motion will have the following view:


θ(t)=θ0cos(ωt+ϕ)\theta (t) = \theta_0 \cos(\omega t+\phi)

where θ0=8°\theta_0 =8\degree is the magnitude and ϕ\phi is the phase constant. The meaning of this constant is the phase at the initial moment of time. Thus, substituting t=0t=0 in the equation, get:


θ(0)=8°cosϕ=8°cosϕ=1ϕ=180°\theta (0) = 8\degree \cos\phi = -8\degree\\ \cos\phi = -1\\ \phi = 180\degree

Answer. 180 degrees.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS