Question #124641
A horizontal forces F pushes a 9kg load up an inclined plane with an acceleration of 1.2m/s^2. what is the magnitude of the force if the plane makes an angle of 30° with the horizontal and the coefficient of kinetic friction between the load and the plane is 0.15?
1
Expert's answer
2020-07-02T17:17:18-0400

Let's apply the Newton's Second Law of Motion in projections on axis xx- and yy:


Fx=max=ma,\sum F_x = ma_x = ma,Fy=may=0,\sum F_y = ma_y = 0,FapplmgsinθFfr=ma,F_{appl} - mgsin\theta - F_{fr} = ma,Nmgcosθ=0,N - mgcos\theta = 0,FapplmgsinθμkN=ma,F_{appl} - mgsin\theta - \mu_k N = ma,N=mgcosθ,N = mgcos\theta,Fapplmgsinθμkmgcosθ=ma.F_{appl} - mgsin\theta - \mu_k mgcos\theta = ma.

From this equation we can find the the magnitude of the applied force:


Fappl=ma+mg(sinθ+μkcosθ),F_{appl} = ma + mg(sin\theta + \mu_k cos\theta),

Fappl=9 kg1.2 ms2+9 kg9.8 ms2(sin30+0.15cos30)=66.3 N.F_{appl} = 9 \ kg \cdot 1.2 \ \dfrac{m}{s^2} + 9 \ kg \cdot 9.8 \ \dfrac{m}{s^2} \cdot (sin30^{\circ} + 0.15 \cdot cos30^{\circ}) = 66.3 \ N.

Answer:

Fappl=66.3 N.F_{appl} = 66.3 \ N.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS