Question #124633
A 120N force applied horizontally drags a 4kg load along a horizontal table at a uniform velocity of 3m/s.
(i) what is the coefficient of kinetic friction between the load and the table?
(ii) if the applied force is suddenly removed, how much further does the load slide before coming to a stop.
1
Expert's answer
2020-06-30T18:24:04-0400

(i) Let's apply the Newton's Second Law of Motion:


FapplFfr=0,F_{appl} - F_{fr} = 0,Fappl=Ffr=μkN,F_{appl} = F_{fr} = \mu_kN,Fappl=μkmg,F_{appl} = \mu_kmg,μk=Fapplmg=120 N4 kg9.8 ms2=3.06.\mu_k = \dfrac{F_{appl}}{mg} = \dfrac{120 \ N}{4 \ kg \cdot 9.8 \ \dfrac{m}{s^2}} = 3.06.

(ii) We can find the distance that the load slide until it finally stops from the Work - Kinetic Energy theorem:


ΔKE=W,\Delta KE = W,KEfKEi=Ffrd,KE_f - KE_i = -F_{fr}d,12mvf212mvi2=μkmgd,\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = -\mu_kmgd,d=12mvf212mvi2μkmg,d = \dfrac{\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2}{-\mu_kmg},d=124 kg[(0 ms)2(3 ms)2]3.064 kg9.8 ms2=0.15 m.d = \dfrac{\dfrac{1}{2} \cdot 4 \ kg \cdot [(0 \ \dfrac{m}{s})^2 - (3 \ \dfrac{m}{s})^2 ]}{-3.06 \cdot 4 \ kg \cdot 9.8 \ \dfrac{m}{s^2}} = 0.15 \ m.

Answer:

(i) μk=3.06.\mu_k = 3.06.

(ii) d=0.15 m.d = 0.15 \ m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS