(i) Let's apply the Newton's Second Law of Motion:
"F_{appl} - F_{fr} = 0,""F_{appl} = F_{fr} = \\mu_kN,""F_{appl} = \\mu_kmg,""\\mu_k = \\dfrac{F_{appl}}{mg} = \\dfrac{120 \\ N}{4 \\ kg \\cdot 9.8 \\ \\dfrac{m}{s^2}} = 3.06."(ii) We can find the distance that the load slide until it finally stops from the Work - Kinetic Energy theorem:
"\\Delta KE = W,""KE_f - KE_i = -F_{fr}d,""\\dfrac{1}{2}mv_f^2 - \\dfrac{1}{2}mv_i^2 = -\\mu_kmgd,""d = \\dfrac{\\dfrac{1}{2}mv_f^2 - \\dfrac{1}{2}mv_i^2}{-\\mu_kmg},""d = \\dfrac{\\dfrac{1}{2} \\cdot 4 \\ kg \\cdot [(0 \\ \\dfrac{m}{s})^2 - (3 \\ \\dfrac{m}{s})^2 ]}{-3.06 \\cdot 4 \\ kg \\cdot 9.8 \\ \\dfrac{m}{s^2}} = 0.15 \\ m."Answer:
(i) "\\mu_k = 3.06."
(ii) "d = 0.15 \\ m."
Comments
Leave a comment