Question #118383
(3) A 20 cm long steel tube of 15 cm internal diameter and 1.0cm thickness is surrounded by a brass tube of the same length and thickness. The tubes carry an axial load of 150 kN. Estimate the load carried by each.

Es = 21 x 106 N/cm2 Eb = 10 x 106 N/cm2
1
Expert's answer
2020-05-29T10:01:33-0400

Given:

Load P: 150 kN

Length L: 20 cm

Steel tube

Internal diameter dsd_s: 15 cm

External diameter DsD_s: 17 cm

Es = 21x106 N/cm2

Brass tube

Internal diameter dbd_b: 17 cm

External diameter DbD_b: 19 cm

Eb = 10x106 N/cm2


Solution

Areas of steel and brass tubes:


As=π4(Ds2ds2)=50.27 cm2. Ab=π4(Db2db2)=56.55 cm2.A_s=\frac{\pi}{4}(D_s^2-d_s^2)=50.27\text{ cm}^2.\\\space\\ A_b=\frac{\pi}{4}(D_b^2-d_b^2)=56.55\text{ cm}^2.


Under the same load strain ϵ\epsilon in steel equals the strain in brass:

σsEs=σbEb, σs=σbEsEb.\frac{\sigma_s}{E_s}=\frac{\sigma_b}{E_b},\\\space\\ \sigma_s=\sigma_b\frac{E_s}{E_b}.

Load on steel added to the load on brass equals the total load:


Ps+Pb=P,σsAs+σbAb=P,σb(EsEbAs+Ab)=P.P_s+P_b=P,\\ \sigma_sA_s+\sigma_bA_b=P,\\ \sigma_b\bigg(\frac{E_s}{E_b}A_s+A_b\bigg)=P.

Load carried by brass and steel respectively:


Pb=σbAb=PAbEsEbAs+Ab=PEbAbEsAs+EbAb=52.3 kN.Ps=σsAs=PAsEsEbAs+Ab=PEsAsEsAs+EbAb=97.7 kN.P_b=\sigma_bA_b=\frac{PA_b}{\frac{E_s}{E_b}A_s+A_b}=\frac{PE_bA_b}{E_sA_s+E_bA_b}=52.3\text{ kN}.\\ P_s=\sigma_sA_s=\frac{PA_s}{\frac{E_s}{E_b}A_s+A_b}=\frac{PE_sA_s}{E_sA_s+E_bA_b}=97.7\text{ kN}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS