The net force
F = F 1 + F 2 + F 3 . \bf F=F_1+F_2+F_3. F = F 1 + F 2 + F 3 . In projections on the axes
F x = F 1 sin 20 ° − F 2 + F 3 cos 30 ° F y = F 1 cos 20 ° + 0 − F 3 sin 30 ° F_x=F_1 \sin20\degree-F_2+F_3 \cos30\degree\\
F_y=F_1 \cos20\degree+0-F_3 \sin30\degree F x = F 1 sin 20° − F 2 + F 3 cos 30° F y = F 1 cos 20° + 0 − F 3 sin 30° Hence
F x = 75 sin 20 ° − 30 + 100 cos 30 ° = 82.3 N , F y = 75 cos 20 ° − 100 sin 30 ° = 20.5 N . F_x=75 \sin20\degree-30+100 \cos30\degree=82.3 N,\\
F_y=75 \cos20\degree-100 \sin30\degree=20.5 N. F x = 75 sin 20° − 30 + 100 cos 30° = 82.3 N , F y = 75 cos 20° − 100 sin 30° = 20.5 N . The magnitude of a net force
F = F x 2 + F y 2 = 82. 3 2 + 20. 5 2 = 84.8 N . F=\sqrt{F_x^2+F_y^2}=\sqrt{82.3^2+20.5^2}=84.8 N. F = F x 2 + F y 2 = 82. 3 2 + 20. 5 2 = 84.8 N . The direction angle
θ = tan − 1 F y F x = tan − 1 20.5 82.3 = 14 ° . \theta =\tan^{-1}\frac{F_y}{F_x }=\tan^{-1}\frac{20.5}{82.3}=14\degree. θ = tan − 1 F x F y = tan − 1 82.3 20.5 = 14°. Answer: 84.8 N [ N 14 ° E ] . 84.8\rm N[N14\degree E]. 84.8 N [ N14°E ] .
Comments