The Kepler's third law says
"T^2=\\frac{4\\pi^2 r^3}{GM}=\\frac{4\\pi^2 r^3}{gR^2}"Hence, the radius of the satellite's orbit
"r=\\sqrt[3]{gR^2T^2\/4\\pi^2}""=\\sqrt[3]{\\frac{9.8\\times (6.4\\times10^6)^2\\times(24\\times 3600)^2}{4\\pi^2}}=4.23\\times 10^7\\:\\rm m." Finally, the height from the surface of the earth to the satellite
"h=r-R=4.23\\times 10^7-6.4\\times 10^6=3.6\\times 10^7\\:\\rm m=36\\:000\\:\\rm km."
Comments
Leave a comment