Question #102683
Two collinear harmonic oscillations are made to superpose. If their displacements are represented as: x1 = 2a cos ωt and x2 = 3a cos (ωt +ϕ) Calculate the amplitude of the resultant oscillation when the phase difference is (i) 2π, (ii) 0, (iii) π/2 and (iv) π
1
Expert's answer
2020-02-17T09:23:43-0500

i)

2acosωt+3acos(ωt+2π)=5acosωt2a \cos ωt+ 3a \cos (ωt +2π)=5a \cos ωt

A=5aA=5a

ii)


2acosωt+3acos(ωt+0)=5acosωt2a \cos ωt+ 3a \cos (ωt +0)=5a \cos ωt

A=5aA=5a


iii)


2acosωt+3acos(ωt+0.5π)=2acosωt3asin(ωt)2a \cos ωt+ 3a \cos (ωt +0.5π)=2a \cos ωt- 3a \sin (ωt)

A=a22+32=13a3.6aA=a\sqrt{2^2+3^2}=\sqrt{13}a\approx 3.6a

iv)


2acosωt+3acos(ωt+π)=acosωt2a \cos ωt+ 3a \cos (ωt +π)=-a \cos ωt

A=aA=a


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS